Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Seminar on Control Theory and Nonlinear Filtering Multivariate approximations in Wasserstein distance by Stein’s method and Bismut’s formula
Multivariate approximations in Wasserstein distance by Stein’s method and Bismut’s formula
Organizer
Shing Toung Yau
Speaker
Zeju Sun
Time
Wednesday, November 6, 2024 9:00 PM - 10:00 PM
Venue
Online
Abstract
In this talk, I will review a paper by X. Fang, Q.-M. Shao and L. Xu. The abstract of this paper is as follows: ‘Stein’s method has been widely used for probability approximations. However, in the multi-dimensional setting, most of the results are for multivariate normal approximation or for test functions with bounded second- or higher-order derivatives. For a class of multivariate limiting distributions, we use Bismut’s formula in Malliavin calculus to control the derivatives of the Stein equation solutions by the first derivative of the test function. Combined with Stein’s exchangeable pair approach, we obtain a general theorem for multivariate approximations with near optimal error bounds on the Wasserstein distance. We apply the theorem to the unadjusted Langevin algorithm.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060