Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Geometry and Dynamics Seminar 1-nodal prime Fano threefolds parametrized by Bridgeland stable objects in Kuznetsov component of del Pezzo threefolds
1-nodal prime Fano threefolds parametrized by Bridgeland stable objects in Kuznetsov component of del Pezzo threefolds
Organizer
Yu Wei Fan
Speaker
Shizhuo Zhang
Time
Wednesday, September 25, 2024 1:30 PM - 3:30 PM
Venue
A3-2a-302
Online
Zoom 815 762 8413 (BIMSA)
Abstract
Let $X$ be a smooth Fano threefold of index one and genus 8, a classical result tells us that $X$ is uniquely determined by a smooth cubic threefold $Y$ and a rank two instanton bundle on it. First, I will show that in the modern categorical language, $X$ is uniquely determined by its Kuznetsov component \Ku(X) and a distinguished object inside it. Then I will describe a conjectural picture for prime Fano threefolds of other genus. Second, I extend the conjectural picture from smooth cases to nodal prime Fano threefold cases and prove part of the conjecture. Namely, a 1-nodal maximally non-factorial prime Fano threefold of genus g=2d+2 coming from the so-called bridge construction is uniquely determined by a smooth del Pezzo threefold of degree d and an (acyclic extension) of a stable non-locally free instanton sheaf of rank two and charge d-1. Equivalently, each X is determined by \Ku(X) and a distinguished object inside the Kuznetsov component. All these facts support a conjecture that those Fano threefolds at most 1-nodal maximally non-factorial are parametrized by a Bridgeland moduli space of stable objects of character (d-1) multiple ideal sheaves of line in Kuznetsov component of degree d del Pezzo threefold. This talk is based on a joint work with Daniele Faenzi and Xun Lin. [This is an online talk.]
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060