Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Tsinghua-BIMSA Symplectic Geometry Seminar Higher genus Gromov-Witten correspondences for log Calabi-Yau surfaces
Higher genus Gromov-Witten correspondences for log Calabi-Yau surfaces
Organizers
Kenji Fukaya , Hong Hao Gao , Hang Yuan
Speaker
Ben Zhou
Time
Wednesday, October 16, 2024 2:00 PM - 3:00 PM
Venue
Shuangqing-C546
Online
Zoom 388 528 9728 (BIMSA)
Abstract
Strominger, Yau, and Zaslow (SYZ) phrased mirror symmetry as a duality between special Lagrangian fibrations over an affine manifold base. The Gross-Siebert program seeks to translate the SYZ conjecture into the language of algebraic geometry using toric degenerations and tropical geometry. From a toric log Calabi-Yau surface X with a smooth anticanonical divisor, one can construct a scattering diagram (which locally one associates a Poisson algebra) and its quantization using the Gross-Siebert program. One can then infer from the scattering diagram various kinds of Gromov-Witten invariants. I will explain the above terms, and how higher-genus correspondences between certain open, closed, and logarithmic Gromov-Witten invariants associated to the log Calabi-Yau surface X can be derived. Part of this is joint work with Tim Gr\"afnitz, Helge Ruddat, and Eric Zaslow.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060