Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > BIMSA Topology Seminar Classification of metric fibration
Classification of metric fibration
Organizers
Matthew Burfitt , Tyrone Cutler , Jing Yan Li , Jie Wu , Jia Wei Zhou
Speaker
Yasuhiko Asao
Time
Monday, October 16, 2023 3:20 PM - 4:20 PM
Venue
A3-4-101
Online
Zoom 559 700 6085 (BIMSA)
Abstract
In this talk, we explain the classificatin of the metric fibration that is a metric analogue of topological fibration introduced by T. Leinster in the study of magnitude. The magnitude of metric spaces, also introduced by Leinster, is an analogy of the Euler characteristic from a viewpoint of enriched category theory. As the Euler characteristic of the usual fibration splits into those of the base and the fiber, the magnitude has the same property with respect to the metric fibration. The classification goes pararell to the topological case, namely it's reduced to that of the principal G fibration, however, we need to consider a group G as a group object in the category of metric spaces. We start the talk from an introduction to magnitude theory.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060