Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > BIMSA-YMSC Tsinghua Number Theory Seminar A new approach to isogenies and Hecke correspondences in mixed characteristic
A new approach to isogenies and Hecke correspondences in mixed characteristic
Organizers
Hansheng Diao , Yueke Hu , Emmanuel Lecouturier , Cezar Lupu
Speaker
Keerthi Madapusi
Time
Monday, May 20, 2024 10:00 AM - 11:00 AM
Venue
Shuangqing-B627
Abstract
Recently, with Gardner and Mathew, I have constructed well-behaved stacks of prismatic (G,mu)-displays, which give a 'linear algebraic' construction of p-divisible groups with additional structure. This verifies some conjectures of Drinfeld. In this talk, I'll give an impressionistic overview of these objects, and explain how they can be used to get a fresh understanding---in the hyperspecial case---of Rapoport-Zink spaces (associated with arbitrary reductive groups!), smooth integral canonical models of Shimura varieties of abelian type, as well as of p-Hecke correspondences on these spaces. In particular, one gets a 'pure thought' proof of Scholze's conjectural cartesian diagram relating Shimura varieties and spaces of shtukas on the level of p-adic formal schemes. Strikingly, one can do almost all of this without ever mentioning abelian varieties or p-divisible groups. This work is joint with Si Ying Lee.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060