统计学习
统计学习课程旨在为学生提供一个全面而深入的数据分析和数学建模基础。本课程融合了统计学、机器学习和数据科学的核心概念,为学生在大数据时代的各种应用场景中做好准备。课程内容包括统计学习的基本原理,包括概率论和统计推断的回顾。随后,学生将深入探讨各种监督学习和非监督学习技术,从经典的线性回归和逻辑回归,到更高级的方法如支持向量机、决策树和神经网络。
其次会介绍模型的选择、评估和优化,学生将学习如何使用交叉验证、正则化和模型集成等技术来提高模型的性能和泛化能力。
此外,课程还会使用Python或R作为编程训练,具体实现统计学习算法。
其次会介绍模型的选择、评估和优化,学生将学习如何使用交叉验证、正则化和模型集成等技术来提高模型的性能和泛化能力。
此外,课程还会使用Python或R作为编程训练,具体实现统计学习算法。
Lecturer
Date
11th October ~ 27th December, 2024
Location
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
Friday | 08:50 - 12:15 | A3-1-101 | ZOOM 03 | 242 742 6089 | BIMSA |
Syllabus
1. 统计与概率论基础
2. 线性回归
3. 分类方法
4. 重抽样方法
5. 模型选择与正则化
6. 非线性模型
7. 支持向量机
8. 非监督学习
9.深度学习
10.集成学习
11. 生物统计初步
12. 生物统计进阶
2. 线性回归
3. 分类方法
4. 重抽样方法
5. 模型选择与正则化
6. 非线性模型
7. 支持向量机
8. 非监督学习
9.深度学习
10.集成学习
11. 生物统计初步
12. 生物统计进阶
Reference
1. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2017.
2. 统计学习方法,李航(第二版)
2. 统计学习方法,李航(第二版)
Audience
Undergraduate
, Advanced Undergraduate
, Graduate
, Postdoc
, Researcher
Video Public
No
Notes Public
No
Language
Chinese
, English