Yi Zhu
Professor
Affiliation: YMSC, BIMSA
Group: Computational Mathematics
Email: yizhu@bimsa.cn
Research Field: Applied and Computational Mathematics
Webpage: http://yizhu-thu.github.io
Education Experience
- 2003 - 2008 Tsinghua University Mathematics Doctor
- 1999 - 2003 Tsinghua University Mathematics Bachelor
Work Experience
- 2024 - YMSC/BIMSA Professor
- 2021 - 2023 BIMSA Associate Professor
- 2020 - 2023 Yau Mathematical Sciences Center, Tsinghua University Associate Professor
- 2016 - 2016 Columbia University Visiting Associate Research Fellow
- 2015 - 2015 Columbia University Visiting Associate Research Fellow
- 2012 - 2012 University of Colorado Boulder Visiting Associate Professor
- 2011 - 2019 Zhou Peiyuan Center for Applied Mathematics Tsinghua University Associate Research Fellow
- 2008 - 2011 University of Colorado Boulder Postdoc
Publication
- [1] Borui Miao, Yi Zhu, Generalized Honeycomb-Structred Materials in the Subwavelength Regime, SIAM J. Appl. Math., 84, 1116-1139 (2024)
- [2] Y. Cao and Y. Zhu, Edge states in super honeycomb structures with PT symmetric deformations, arXiv:2402.15702 (2024)
- [3] L Wang, J Zeng, Y Zhu, Fundamental and dipole gap solitons and their dynamics in the cubic–quintic fractional nonlinear Schrödinger model with a PT-symmetric lattice, Physica D: Nonlinear Phenomena, 465, 134144 (2024)
- [4] L. Lu, H. Guo, X. Yang and Y. Zhu, Temporal difference learning for high-dimensional PIDEs with jumps, SIAM Journal on Scientific Computing, 46(4), C349-C368 (2024)
- [5] B Miao, Y Zhu, Generalized honeycomb-structured materials in the subwavelength regime, SIAM Journal on Applied Mathematics, 84(3), 1116-1139 (2024)
- [6] Liya Guo, Liwei Lu, Zhijun Zeng, Pipi Hu, and Yi Zhu, Weak Collocation Regression for Inferring Stochastic Dynamics with Lévy Noise, accepted by Communications in Computational Physics(2024)
- [7] L Lu, R Hu, X Yang, Y Zhu, Multi-Agent Relative Investment Games in a Jump Diffusion Market with Deep Reinforcement Learning Algorithm, arXiv preprint arXiv:2404.11967 (2024)
- [8] Liwei Lu, Zhijun Zeng, Yan Jiang, Yi Zhu, and Pipi Hu, Weak Collocation Regression method: fast reveal hidden stochastic dynamics from high-dimensional aggregate data, Journal of Computational Physics, 502, 112799 (2024)
- [9] L Guo, L Lu, Z Zeng, P Hu, Y Zhu, Weak Collocation Regression for Inferring Stochastic Dynamics with L\'{e} vy Noise, arXiv preprint arXiv:2403.08292 (2024)
- [10] Y Cao, Y Zhu, Edge states in super honeycomb structures with PT_]-symmetric deformations, arXiv preprint arXiv:2402.15702 (2024)
- [11] Liwei Lu, Hailong Guo, Xu Yang, and Yi Zhu, TEMPORAL DIFFERENCE LEARNING FOR HIGH-DIMENSIONAL, SIAM Journal on Scientific Computing, 46(2024), 4, C349-C368
- [12] L. Wang, J. Zeng and Y. Zhu, Fundamental and dipole gap solitons and their dynamics in the cubic–quintic fractional nonlinear Schroedinger model with a PT-symmetric lattice, Physica D, 465, 134144 (2024)
- [13] Zhijun Zeng, Pipi Hu, Chenglong Bao, Yi Zhu, Zuoqiang Shi, Reconstruction of dynamical systems from data without time labels, arXiv preprint arXiv:2312.04038 (2023)
- [14] Y Cao, Y Zhu, Double Dirac cones in band structures of periodic Schroedinger operators, Multiscale Modeling & Simulation, 21(3), 1147-1169 (2023)
- [15] Yan Jiang*, Wuyue Yang*#, Yi Zhu, and Liu Hong#, Entropy Structure Informed Learning for Solving Inverse Problems of Differential Equations, Chaos, Solitons and Fractals, 175, 114057 (2023)
- [16] P. Hu, P. Xie, Yi Zhu, Traveling edge states in massive Dirac equations along slowly varying edges, IMA Journal of Applied Mathematics, 88(3), 455-471 (2023)
- [17] Y. Cao, Yi Zhu, Double conical degeneracy on the band structure of periodic Schrödinger operators, accepted by (SIAM) Multiscale. Model. Simul.(2023)
- [18] Pipi Hu, Wuyue Yang, Yi Zhu, and Liu Hong, Revealing hidden dynamics from time-series data by ODENet, Journal of Computational Physics, 461, 111203 (2022)
- [19] M. Ablowitz, X. Luo, Z. Musslimani, Yi Zhu, Integrable nonlocal derivative nonlinear Schrödinger equations, Inverse Problems, 38(6), 065003 (2022)
- [20] H. Guo, M. Zhang, Yi Zhu, Three-fold Weyl points in the Schrödinger operator with periodic potentials, SIAM Math. Anal., 54(2022)
- [21] M. J. Ablowitz, X. D. Luo, Z. H. Musslimani, Y. Zhu, Integrable nonlocal derivative nonlinear Schrödinger equations., Inverse Probl., 38(6), 065003 (2022)
- [22] Liwei Lu, Zhijun Zeng, Yan Jiang, Yi Zhu, Pipi Hu, fast reveal hidden stochastic dynamics from high-dimensional aggregate data(2022)
- [23] H Guo, M Zhang, Y Zhu, ThreeFold Weyl Points for the Schrödinger Operator with Periodic Potentials, SIAM Journal on Mathematical Analysis, 54(3), 3654-3695 (2022)
- [24] H. Guo and X. Yang, Y. Zhu, Unfitted Nitsche’s Method for Computing Wave Modes in Topological Materials, Journal of Scientific Computing, 88(1), 24 (2021)
- [25] Hailong Guo, Xu Yang, Yi Zhu, Unfitted Nitsche’s method for computing band structures of phononic crystals with periodic inclusions, Computer Methods in Applied Mechanics and Engineering, 380, 113743 (2021)
- [26] H. Guo and M. Zhang, Y. Zhu, Three-fold Weyl points in the Schrödinger operator with periodic potentials, to appear in SIAM Math. Anal.
- [27] H. Guo, X. Yang, Yi Zhu, Unfitted Nitsche's method for computing wave modes in topological materials, J. Sci. Comput, 88(2021), 24
- [28] P. Xie, Yi Zhu, Wave Packets in the Fractional Nonlinear Schrödinger Equation with a Honeycomb Potential, Multiscale Modeling & Simulation, 19(2), 951-979 (2021)
- [29] Wuyue Yang, Liangrong Peng, Yi Zhu, and Liu Hong, When machine learning meets multiscale modeling in chemical reactions, The Journal of Chemical Physics, 153(9), 094117 (2020)
- [30] Wuyue Yang, Liangrong Peng, Yi Zhu, and Liu Hong, Identification of hydrodynamic instability by convolutional neural networks, arXiv preprint arXiv:2006.01446 (2020)
- [31] P Hu, L Hong, Y Zhu, Linear and nonlinear electromagnetic waves in modulated honeycomb media, Studies in Applied Mathematics, 144(1), 18-45 (2020)
- [32] H. Guo and X. Yang, Y. Zhu, Unfitted Nitsche's method for computing band structures in phononic crystals with impurities, Comput. Methods Appl. Mech. Engrg., 380(2020), 113743
- [33] P. Hu, L. Hong, Linear and nonlinear wave dynamics in modulated honeycomb media, Stud. Appl. Math., 144, 18-45 (2020)
- [34] P Xie, Y Zhu, Wave packet dynamics in slowly modulated photonic graphene, Journal of Differential Equations, 267(10), 5775-5808 (2019)
- [35] J. P. Lee-Thorp, M. I. Weinstein, Elliptic operators with honeycomb symmetry: Dirac points, edge states and applications to photonic graphene, Archive for Rational Mechanics and Analysis, 232, 1-63 (2019)
- [36] H Guo, X Yang, Y Zhu, Bloch theory-based gradient recovery method for computing topological edge modes in photonic graphene, Journal of Computational Physics, 379, 403-420 (2019)
- [37] P. Xie, Wave-packet dynamics in slowly modulated photonic graphene, J. Differential Equations, 267(2019), 5775-5808 (2019)
- [38] H. Guo, X. Yang, Bloch theory-based gradient recovery method for computation of edge mode in photonic graphene, J. Comp. Phys., 379, 403-420 (2019)
- [39] Zaibao Yang, Wen-An Yong, Yi Zhu, Generalized hydrodynamics and the classical hydrodynamic limit, arXiv preprint arXiv:1809.01611 (2018)
- [40] L Peng, Y Zhu, L Hong, Generalized Onsager's reciprocal relations for the master and Fokker-Planck equations, Physical Review E, 97(6), 062123 (2018)
- [41] Generalized hydrodynamics and the classical hydrodynamic limit (with Z. Yang and W.-A. Yong), arXiv: 1809.01611
- [42] L.Peng, L. Hong, The Markov process admits a consistent steady-state thermodynamic formalism, Journal of Mathematical Physics, 59(1), 013302 (2018)
- [43] Generalized Onsager's reciprocal relations for the master and Fokker-Planck equations (with L. Peng and L. Hong), Phys. Rev. E 97 (2018), 062123
- [44] Z YANG, WA Yong, Y Zhu, A Generalized hydrodynamics and its classical hydrodynamic limit, arXiv preprint arXiv:1809.01611 (2018)
- [45] Z Lin, Y Zhu, Z Wang, Local bifurcation of electrohydrodynamic waves on a conducting fluid, Physics of Fluids, 29(3) (2017)
- [46] H Zhong, Y Zhang, Y Zhu, D Zhang, C Li, Y Zhang, F Li, MR Belić, M Xiao, Transport properties in the photonic super‐honeycomb lattice—a hybrid fermionic and bosonic system, Annalen der Physik, 529(3), 1600258 (2017)
- [47] Z. Lin, Z. Wang, Local bifurcation of electro-hydrodynamic waves on a conducting fluid, Phys. Fluids, 29(032107) (2017)
- [48] H. Zhong, Y. Zhang, et al, Transport properties in the photonic super-honeycomb lattice a hybrid fermionic and bosonic system, Ann. Phys., 529, 1600258 (2017)
- [49] L. Hong, J. Chen, W.-A. Yong, Novel dissipative properties of the master equation, Journal of Mathematical Physics, 57(10) (2016)
- [50] Y. Zhang, H. Zhong, M. R. Belic, et al, PT symmetry in a fractional Schrödinger equation, Laser & Photonics Reviews, 10(3), 526-531 (2016)
- [51] Liu Hong, Zaibao Yang, Yi Zhu, Wen-An Yong, A novel construction of thermodynamically compatible models and its correspondence with Boltzmann-equation-based moment-closure hierarchies, Journal of Non-Equilibrium Thermodynamics, 40(4), 247-256 (2015)
- [52] CW Curtis, Y Zhu, Dynamics in‐Symmetric Honeycomb Lattices with Nonlinearity, Studies in Applied Mathematics, 135(2), 139-170 (2015)
- [53] Y Zhu, L Hong, Z Yang, WA Yong, Conservation-dissipation formalism of irreversible thermodynamics, Journal of Non-Equilibrium Thermodynamics, 40(2), 67-74 (2015)
- [54] D Song, V Paltoglou, S Liu, Y Zhu, D Gallardo, L Tang, J Xu, M Ablowitz et al., Unveiling pseudospin and angular momentum in photonic graphene, Nature communications, 6(1), 6272 (2015)
- [55] Zaibao Yang, Wen-An Yong, Yi Zhu, A rigorous derivation of multicomponent diffusion laws, arXiv preprint arXiv:1502.03516 (2015)
- [56] A rigorous derivation of multicomponent diffusion laws (with Z. Yang and W.-A. Yong), arXiv:1502.03516
- [57] C. W. Curtis, Dynamics in PT-symmetric honeycomb lattices with nonlinearity, Stud. Appl. Math., 135, 139-170 (2015)
- [58] Unveiling pseudo-spin and angular momentum in photonic graphene (with D. Song, V. Paltoglou et al), Nat. Commun. 6 (2015), 6272
- [59] L. Hong, Z. Yang, W.-A. Yong, Conservation-dissipation formalism for non-equilibrium thermodynamics, J. Non-Equil. Thermodynamics, 40, 67-74 (2015)
- [60] L Hong, Z Yang, Y Zhu, WA Yong, Boltzmann-Equation Based Derivation of Balance Laws in Irreversible Thermodynamics, arXiv preprint arXiv:1411.7102 (2014)
- [61] D Song, L Tang, Y Zhu, M Ablowitz, V Paltoglou, NK Efremidis, J Xu et al., Direct observation of “pseudospin”-mediated vortex generation in photonic graphene, Conference on Lasers and Electro-Optics (CLEO) (2014)
- [62] Direct observation of pseudospin-mediated vortex generation in photonic graphene (D. Song, L. Tang, S. Liu, et al), In CLEO:EELS Fundamental Science, 2014
- [63] MJ Ablowitz, Y Zhu, Nonlinear wave packets in deformed honeycomb lattices, SIAM Journal on Applied Mathematics, 73(6), 1959-1979 (2013)
- [64] M. J. Ablowitz, C. W. Curtis, Localized nonlinear edge states in honeycomb lattices, Physical Review A, 88(1), 013850 (2013)
- [65] MJ Ablowitz, Y Zhu, Unified Orbital Description of the Envelope Dynamics in Two‐Dimensional Simple Periodic Lattices, Studies in Applied Mathematics, 131(1), 41-71 (2013)
- [66] Nonlinear wave packets in deformed honeycomb lattices (with M. J. Ablowitz), SIAM J. Appl. Math. 73(2013), 1959-1979
- [67] M. J. Ablowitz, Nonlinear dynamics of bloch wave packets in honeycomb lattices, , 1, 1-26 (2013)
- [68] Unified orbital description of the envelope dynamics in two-dimensional simple periodic lattices (with M. J. Ablowitz), Stud. Appl. Math. 131(2013),41-71
- [69] S.D. Nixon, J. Yang, Nonlinear dynamics of wave packets in parity-time-symmetric optical lattices near the phase transition point, Optics letters, 37(23), 4874-4876 (2012)
- [70] MJ Ablowitz, CW Curtis, Y Zhu, On tight‐binding approximations in optical lattices, Studies in Applied Mathematics, 129(4), 362-388 (2012)
- [71] X. Xing, Y. Liang, et al, Scalable misbehavior detection in online video chat services, , 552-560 (2012)
- [72] M. J. Ablowitz, Nonlinear waves in shallow honeycomb lattices, SIAM Journal on Applied Mathematics, 72(1), 240-260 (2012)
- [73] M. J. Ablowitz, C. W. Curtis, On Tight Binding Approximations in Optical lattice, Stud. Appl. Math., 129, 362-388 (2012)
- [74] M. J. Ablowitz, Nonlinear diffraction in photonic graphene, Optics letters, 36(19), 3762-3764 (2011)
- [75] M. J. Ablowitz, T. S. Haut, T. P.Horikis, S. D. Nixon, Nonlinear wave dynamics: From lasers to fluids, Discrete and Continuous Dynamical Systems-S, 4(5), 923-955 (2010)
- [76] M. J. Ablowitz, Evolution of Bloch-mode envelopes in two-dimensional generalized honeycomb lattices, Physical Review A—Atomic, Molecular, and Optical Physics, 82(1), 013840 (2010)
- [77] Y Zhu, R Haberman, J Yang, Separatrix map analysis for fractal scatterings in weak interactions of solitary waves, Studies in Applied Mathematics, 122(4), 449-483 (2009)
- [78] MJ Ablowitz, TP Horikis, SD Nixon, Y Zhu, Asymptotic Analysis of Pulse Dynamics in Mode‐Locked Lasers, Studies in Applied Mathematics, 122(4), 411-425 (2009)
- [79] M.J. Ablowitz, S. D. Nixon, Conical diffraction in honeycomb lattices, Physical Review A—Atomic, Molecular, and Optical Physics, 79(5), 053830 (2009)
- [80] J. Yang, R. Haberman, Separatrix map analysis for fractal scatterings in weak solitary wave interactions, Stud. Appl. Math., 122, 449-483 (2009)
- [81] M. J. Ablowitz, T. P. Horikis, S. D. Nixon, Asymptotic analysis of pulse dynamics in mode-locked lasers, Stud. Appl. Math., 122, 411-425 (2009)
- [82] J. Yang, R. Haberman, A universal separatrix map for weak interactions of solitary waves in generalized nonlinear Schrödinger equations, Physica D: Nonlinear Phenomena, 237(19), 2411-2422 (2008)
- [83] J. Yang, R. Haberman, Universal Map for Fractal Structures in Weak Interactions of Solitary Waves, Physical review letters, 100(14), 143901 (2008)
- [84] J. Yang, Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations, Physical Review E, 75(3), 036605 (2007)
- [85] When machine learning meets multiscale modeling in chemical reactions (with W. Yang, L. Peng and L. Hong) to appear in J. Chem. Phys.vvv
Update Time: 2025-08-15 09:00:06