Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Administration
    • Academic Support
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Administration
Academic Support
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Anatoli Kirillov

Anatoli Kirillov

     Professor    
Professor Anatoli Kirillov

Group: Algebraic Geometry

Office: A3-1-205

Email: kirillov@bimsa.cn

Research Field: Representation theory, Algebraic Combinatorics, Tropical Combinatorics, Algebraic Geometry, Special Functions, Exactly Solvable Models

Webpage: https://www.kurims.kyoto-u.ac.jp/~kirillov

Biography


Anatol Kirillov is a researcher in the area of integrable systems, representation theory, special functions, algebraic combinatorics, and algebraic geometry. He worked as a professor in different universities in Japan for the last 20 years. In 2022 he joined BIMSA as a research fellow.

Research Interest


  • Representation theory (Classical groups, Kac-Moody algebras and groups, Quantum groups, Hecke algebras)
  • Algebraic Combinatorics (Symmetric functions, Young tableaux, Rigged configurations, Yang-Baxter equations, Bracket algebras, Schubert calculus)
  • Tropical Combinatorics (Gelfand-Tsetlin patterns, Crystal basis, Convex polytops, Toric varieties, Continious analog of Robinson-Schensted-Knuth correspondence)
  • Algebraic Geometry (Artin-Mazur formal groups, Mixed Hodge structures, Quantum cohomology, Quantum Schubert calculus)
  • Special Functions (Clebsch-Gordan and Racah-Wigner coefficients, generalized Hypergeometric functions, Quantum polylogarithms)
  • Exactly Solvable Models (Bethe ansatz, Formfactors, Dilogarithm identities, Bosonic and Fermionic formulae for characters and branching functions)

Education Experience


  • 1971 - 1975      Leningrad SU, Russia
  • - 1988      LOMI, Lenengrad      Doctor      Hb.D
  • - 1986      LOMI, Lenenfrad      Doctor

Work Experience


  • 2022 -      BIMSA      Professor
  • 2001 - 2022      RIMS,Kyoto,Japan      Professor
  • 1998 - 2001      Nagoya University      Professor
  • 1993 - 1998      U. Wisconsin      Professor
  • 1971 - 1993      LOMI, Leningrad      Researcher

Publication


  • [1] Anatol Kirillov, Gleb Nenashev, Boris Shapiro, Arkady Vaintrob, Bizonotopal Graphical Algebras, arXiv preprint arXiv:2407.19431 (2024)
  • [2] A. Kirillov, G. Nenashev, On Q-deformations of Postnikov-Shapiro algebras, Niminaire Lotharingien de Combinatoire, 78B (2017), Article n.55, 12 pp.
  • [3] A.Berenstein, A. Kirillov, Cactus group and Gelfand--Tsetlin group, Preprint RIMS-1858, 2016.
  • [4] A.P. Isaev, A. Kirillov, V.O. Tarasov, Bethe subalgebras in affine Birman--Murakami--Wenzl algebras and flat connections for q-KZ equations, arXiv preprint arXiv:1510.05374, 49 (2015)
  • [5] A. Kirillov, R. Sakamoto, Bethe's Quantum Numbers And Rigged Configurations, Nuclear Physics B 905 (2016), 359--372, doi:10.1016/j.nuclphysb.2016.02.020 ; Preprint RIMS-1834, 2015, arXiv:1509.02305.
  • [6] A. Kirillov, Rigged Configurations and Catalan, Stretched Parabolic Kostka Numbers and Polynomials : Polynomiality, Unimodality and Log-concavity (2015)
  • [7] A. Kirillov, H. Naruse, Construction of double Grothendieck polynomials of classical types using Id-Coxeter algebras, Preprint RIMS-1823, 2015, arXiv:1504.08089.
  • [8] A. Kirillov, On Double Schubert and Grothendieck polynomials for Classical Groups, Preprint RIMS-1820, 2015, arXiv:1504.01469.
  • [9] A. Kirillov, On some quadratic algebras I+I/2 : Combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and Reduced polynomials, SIGMA 12(2016) 002, 172 pages; Preprint RIMS-1817, 2015, arXiv:1502.00426.
  • [10] A. Kirillov, Notes on Schubert, Grothendieck and Key polynomials, SIGMA 12 (2016) 037, 56 pages, Preprint RIMS-1815, 2015, arXiv:1501.07337.
  • [11] A. Kirillov, R. Sakamoto, Some Remarks On Nepomechie--Wang Eigenstates For Spin 1/2 XXX Model, arXiv preprint arXiv:1406.1958, 15, 1-16 (2014)
  • [12] A. Kirillov, R. Sakamoto, Singular solutions to the Bethe ansatz equations and rigged configurations, Journal of Physics A: Mathematical and Theoretical, 47(20), 205207 (2014)
  • [13] A. Isaev, A. Kirillov, Bethe subalgebras in Hecke algebra and Gaudin models, Letters in Mathematical Physics, 104, 179-193 (2014)
  • [14] A. Kirillov, On some algebraic and combinatorial properties of Dunkl elements, International Journal of Modern Physics B, 26(27n28), 1243012 (2012)
  • [15] A. Kirillov, T. Maeno, Affine nil-Hecke algebras and braided differential structure on affine Weyl groups, Publications of the Research Institute for Mathematical Sciences, 48(1), 215-228 (2012)
  • [16] A. Kirillov, On some combinatorial and algebraic properties of Dunkl elements RIMS Kokyuroku, 1795, 1-44, Kyoto University, 2012
  • [17] A. Kirillov, On some algebraic and combinatorial properties of Dunkl elements, International Journal of Modern Physics B, 26 (2012), No. 27n28
  • [18] A. Kirillov, H. Katsura, N. Kawashima, V. Korepin, S. Tanaka, Entanglment in valence-bond-solid states on symmetric graphs, J. Phys. A 43 (2010), no.255303, 28p.
  • [19] A. Kirillov, T.Maeno, Nichols-Woronowicz model of coinvariant algebra of complex reflection groups, J. Pure Appl. Algebra 214 (2010), 402-409
  • [20] A. Kirillov, R. Sakamoto, Relationships between two approaches: rigged configurations and 10-eliminations, Letters in Mathematical Physics, 89, 51-65 (2009)
  • [21] A. Kirillov, R. Sakamoto, Paths and Kostka-Macdonald polynomials, Moscow Math. Journal, 9(2009), 823-854 (2009)
  • [22] A. Kirillov, T.Maeno, Wonderful Amoebas, Sugaku 58 (2006), 151-164, translation in Sugaku Expositions 22 (2009), 107-120
  • [23] A. Kirillov, T. Maeno, Braided differential structure on Weyl groups, quadratic algebras, and elliptic functions, International Mathematics Research Notices, 2008(9), rnn046-rnn046 (2008)
  • [24] Feigin B., A. Kirillov, Loktev S., Combinatorics and geometry of higher level Weyl modules, arXiv preprint math/0503315, 221, 33-47 (2005)
  • [25] A. Kirillov, T.Maeno, Exterior differential algebras and flat connections on Weyl groups, , 81(2), 30-35 (2005)
  • [26] A. Kirillov, T.Maeno, On some noncommutative algebras related with K-theory of flag varieties, IRMN 60 (2005), 3753-3789, Preprint RIMS, 2005, 25p. math.CO/0504290
  • [27] K.Hikami, A. Kirillov, Hypergeometric generating function of L-function, Slater's identities and Quantum invariant, Algebra i Analiz 17 (2005), no.1, 190-208, Preprint RIMS-1463, 2004, 18p. math-ph/0406042
  • [28] A. Kirillov, An invitation to the generalized saturation conjecture, Publications of the Research Institute for Mathematical Sciences, 40(4), 1147-1239 (2004)
  • [29] A. Kirillov, T.Maeno, A note on quantization on Nichols algebra model for Schubert calculus on Weyl groups, Lett. in Math. Phys. 72 (2005) 233-241, Preprint RIMS-1481, 2004, 8p. math.QA/0412069
  • [30] A. Kirillov, T.Maeno, Noncommutative algebras related with Schubert calculus on Coxeter groups, European Journal of Combinatorics, 25 (2004), 1301-1325, Preprint RIMS-1437, 2003, 23p. math.CO/0310068
  • [31] K.Hikami, A. Kirillov, Torus knot and minimal model, Physics Letters B 575 (2003), 343-348, hep-th/0308152, 2003, 10p.
  • [32] A. Kirillov, M.Taneda, Generalized Umemura polynomials, The Rocky Mountain journal of mathematics, 32, 691-702 (2002)
  • [33] A. Kirillov,A.Schilling,M.Shimozono, A bijection between Littlewood-Richardson tableaux and rigged configurations, Selecta Mathematica, 8(1), 67 (2002)
  • [34] A. Kirillov, M.Taneda, Generalized Umemura polynomials and the Hirota-Miwa equations, MathPhys Odyssey 2001: Integrable Models and Beyond, 23, 313-332 (2002)
  • [35] A. Kirillov, Introduction to Tropical Combinatorics, Physics and Combinatorics 2000 (Proceedings of the Nagoya 2000 International Workshop on Physics and Combinatorics, Nagoya University, August 21-26, 2000, ed. A.Kirillov and N.Liskova), 82-150, World Scientific, Singapore, 2001
  • [36] A.Kirillov, A.Tsuchiya, H.Umemura, a Remark on the Harish-Chandra Series for Hyperboloids, , 11-15 (2001)
  • [37] A.Kirillov, A.Tsuchiya, H.Umemur, Ubiquity of Kostka polynomials, , 85-200 (2001)
  • [38] J.F. van Diejen, A.Kirillov, Determinantal formulas for zonal spherical functions of hyperboloids, Mathematische Annalen, 319(2), 215-234 (2001)
  • [39] A.Kirillov, Combinatorics of Young tableaux and rigged configurations (Russian), Proceedings of the St.Petersburg Math. Soc., 7((1999)), 23-115; translation in Proceedings of the St.Petersburg Math. Soc. Volume VII, Amer. Math. Soc. Transl. Ser.2, 203, 17-98, AMS, Providence, RI (2001)
  • [40] A.Kirillov, Bijectives correspondances for rigged configurations (Russian), Algebra i Analiz, 12(2000), 204-240, translation in St.Petersburg Math. J. 12 (2001), no.1, 161-190 (2001)
  • [41] A.Kirillov, A.Schilling and M.Shimozono, Various representations of the generalized Kostka polynomials, The Andrews Festschrift, Seventeen Papers on Classical Number Theory and Combinatorics (eds. D.Foata and G.-N.Han), 209-226, Springer, 2001 and Seminaire Lotharingien de Combinatoire 42 (1999), 19pp.
  • [42] A.Berenstein, A.Kirillov, Domino tableaux, Schützenberger involution, and the symmetric group action, Discrete Mathematics, 225(1-3), 15-24 (2000)
  • [43] J.F. van Diejen, A.Kirillov, Formulas for-Spherical Functions Using Inverse Scattering Theory of Reflectionless Jacobi Operators, Communications in Mathematical Physics, 210, 335-369 (2000)
  • [44] J.F. van Diejen, A.Kirillov, A combinatorial formula for the associated Legendre functions of integer degree, Advances in Mathematics, 149(1), 61-88 (2000)
  • [45] A. Kirillov, N.A. Liskova, Bethe's states for generalized XXX and XXZ models, Physics and Combinatorics 2000 (Proceedings of the Nagoya 2000 International Workshop on Physics and Combinatorics, Nagoya University, August 21-26, 2000, ed. A.Kirillov and N.Liskova), 151-163, World Scientific, Singapore, 2001. math.QA/0103030
  • [46] A.Kirillov, Some remarkable quadratic algebras and Schubert Calculus, Proceedings of the 45-th Symposium on Algebra, 45(8), 142-151 (2000)
  • [47] A.Kirillov, On some quadratic algebras, L.D. Faddeev's Seminar on Mathematical Physics, 91-113, American Mathematical Society Translations: Series 2 201, AMS, Providence, RI, 2000, q-alg/9705003
  • [48] A.Kirillov, T.Maeno, Quantum double Schubert polynomials, quantum Schubert polynomials and Vafa-Intriligator formula, Proceedings of the 9th International Conference on Formal Power Series and Algebraic Combinatorics(301-312) (2000)
  • [49] A.Kirillov, On some quadratic algebras: Jucys-Marphy and Dunkl elements, Calogero-Moser-Sutherland models, (Montreal, PQ, March 10-15, 1997) CRM Series in Mathematical Physics, 231-248 (2000)
  • [50] A.Kirillov, t-Deformations of quantum Schubert polynomials, Funkcialaj Ekvacioj, 43, 57-69 (2000)
  • [51] A.Kirillov, Quantum Schubert polynomials and quantum Schur functions, International Journal of Algebra and Computation, 9(03n04), 385-404 (1999)
  • [52] A.Kirillov, Quantum Grothendieck polynomials, Algebraic methods and q-special functions (Montréal, QC, 1996), 22, 215-226 (1999)
  • [53] A.Kirillov, M.Noumi, q-Difference raising operators for Macdonald polynomials and the integrality of transition coefficients, Algebraic Methods and q-Special Functions, CRM Proc. Lecture Notes 22, 227-243 (1999)
  • [54] A.Kirillov, A.Schilling, M.Shimozono, On a bijection between Littlewood-Richardson tableaux and rigged configurations, Proceedings of the 11th International Conference on Formal Power Series and Algebraic Combinatorics, 266-274 (1999)
  • [55] G.Hatayama, A.Kirillov, A.Kuniba, M.Okado, T.Takagi and Y.Yamada, Character formulae of sl_n modules and inhomogeneous paths, Nucl. Phys. B 536 (1999), 575-616, math.QA/9802085
  • [56] S.Fomin, A.Kirillov, Quadratic algebras, Dunkl elements, and Schubert calculus, Advances in geometry, 147, 147-182 (1999)
  • [57] A.Kirillov, M.Noumi, Affine Hecke algebras and raising operators for Macdonald polynomials, , 93(1), 1-39 (1998)
  • [58] A. Kirillov, M.Shimozono, A generalization of the Kostka-Foulkes polynomials, arXiv preprint math/9803062, 15, 27-69 (1998)
  • [59] A.Kirillov, New combinatorial formula for modified Hall-Littlewood polynomials, q-Series from a Contemporary Perspective (AMS-ISM-SIAM Joint Summer Research Conference on q-series, Combinatorics, and computer Algebra; June 21-25, 1998, Mount Holyoke, MA, USA), 283-333, Contemporary Mathematics 254, AMS, Providence, RI, 2000, math.QA/9803006
  • [60] A.Kirillov, A.Kuniba and T.Nakanishi, Skew Young diagram method in spectral decomposition of integrable lattice models II, Higher levels, Nucl. Phys. B 529 (1998), 611-638, q-alg/9711009
  • [61] A.Berenstein, A.Kirillov, Domino tableaux, Schutzenberger involution and action of the symmetric group, Proceedings of the 10th International Conference on Formal Power Series and Algebraic Combinatorics, Fields Institute, Toronto, 1998, 55-66. q-alg/9709010
  • [62] S.Fomin, A.Kirillov, Reduced words and plane partitions, Journal of Algebraic Combinatorics, 6(4), 311-319 (1997)
  • [63] A. Kirillov, Cauchy identities for universal Schubert polynomials, arXiv preprint q-alg/9703047, 283, 123-139 (1997)
  • [64] A. Kirillov, Skew divided difference operators and Schubert polynomials, J. Pure Appl. Algebra SIGMA 3 (2007) 072, 14 pages, Preprint CRM-2526, 1997, 15p.; q-alg/9712053
  • [65] A.Kirillov, T.Maeno, Quantum double Schubert polynomials, quantum Schubert polynomials and Vafa-Intriligator formula, Proceedings of the 9th International Conference on Formal Power Series and Algebraic Combinatorics, Wien, July 14-July 18, 1997, 301-312.
  • [66] A.Kirillov, A.Kuniba and T.Nakanishi, Skew Young diagram method in spectral decomposition of integrable lattice models, Comm. Math. Phys. 185 (1997), no.2, 441-465. q-alg/9607027
  • [67] A.Kirillov, N.A.Liskova, Completeness of Bethe's states for generalized XXZ model, J. Phys. A 30 (1997), no.4, 1209-1226. hepth/9407107
  • [68] S.Fomin, A.Kirillov, Universal exponential solution of the Yang-Baxter equation, Letters in Mathematical Physics, 37, 273-284 (1996)
  • [69] S.Fomin, A.Kirillov, Combinatorial $B_n$-analogues of Schubert polynomials, Transactions of the AMS, 348(1996), 3591-3620 (1996)
  • [70] S.Fomin, A.Kirillov, The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Discrete Mathematics 153 (1996), 123-143.
  • [71] A.Berenstein, A.Kirillov, Group generated by involutions, Gelfand-Tsetlin patterns and combinatorics of Young tableaux, Algebra i Analiz 7 (1995), no.1, 7(1), 92-152 (1996)
  • [72] A.Kirillov, Dilogarithm identities, Progress of theoretical physics supplement, 118, 61-142 (1995)
  • [73] A.Kirillov, Dilogarithm identities, Lectures in Mathematical Sciences the University of Tokyo, 7 (1995), 96p.
  • [74] S.Fomin, A.Kirillov, Grothendieck polynomials and the Yang-Baxter equation, Proc. formal power series and alg. comb, 1994, 183-190 (1994)
  • [75] A.Kirillov, A.Lascoux, B.Leclerc and J.-Y.Thibon, S駻ies g駭駻atrices pour les tableaux de dominos (French), C.R. Acad. Sci. Paris Ser. I 318 (1994), no.5, 395-400.
  • [76] A.Kirillov, Dilogarithm identities, partitions and spectra in conformal field theory, Part I, Algebra i Analiz 6 (1994), no.2, 152-175.
  • [77] A.Kirillov, Dilogarithm identities and spectra in conformal field theory, , 99-108 (1993)
  • [78] A.Kirillov, Generalization of the Gale-Ryser theorem, arXiv preprint hep-th/9304099, 21, 1047-1055 (1993)
  • [79] A.Kirillov, N.Yu.Reshetikhin, Formulae for the multiplicites of the occurrence of irreducible components in the tensor product of representations of simple Lie algebras (Russian), Zap. Nauch. Sem. LOMI 205 (1993), 30-37, translation in Journal of Mathematical Sciences 80, no.3 (1996), 1768-1772
  • [80] A.Kirillov, P.Mathieu, L.B馮in, M.A.Walton, Berenstein-Zelevinski triangles, elementary couplings and fusion rules, Lett. in Math. Phys. 28 (1993), no.4, 257-268.
  • [81] S.Fomin, A.Kirillov, The Yang-Baxter equation, symmetric functions and Schubert polynomials, Proceedings of the 5th International Conference on Formal Power Series and Algebraic Combinatorics(215-230) (1993)
  • [82] A.Kirillov, P.Mathieu, D.Senechal, M.A.Walton, Can fusion coefficients be calculated from the depth rule ?, Nucl. Phys. B, 391(no.3), 651-674 (1993)
  • [83] A.Kirillov, Unimodality of generalized Gaussian coefficients, arXiv preprint hep-th/9212152, 315, 497-501 (1992)
  • [84] A.Kirillov, P.Mathieu, D.Senechal, M.A.Walton, Crystallizing the depth rule for WZNW fusion coefficients, Proceedings of the XIXth International Colloquium on Group Theoretical Physics (1992)
  • [85] S.V.Kerov, A.Kirillov, Combinatorics of rational representations of the group GL(n,C), 200(3), 83-93 (1992)
  • [86] A.Kirillov, N.A.Liskova, Clebsch-Gordan and Racah-Wigner coefficients for $U_q(SU(1,1))$, Int. Jour. Mod. Phys. A, 7(1-2), 611-621 (1992)
  • [87] A.Kirillov, Decomposition of symmetric and exterior powers of the adjoint representation of $hbox{germ g}l(N)$. 1. Unimodality of principal specialization of the internal product of the Schur functions, Int. Jour. Mod. Phys. A, 7(1-2), 545-579 (1992)
  • [88] A.Kirillov, The Lagrange identity and the hook formula (Russian), Zap. Nauch. Sem. LOMI, 172(1989), 78-87 (1992)
  • [89] A.Kirillov, Clebsch-Gordan quantum coefficients, Journal of Soviet Mathematics, 53, 264-276 (1991)
  • [90] A.Kirillov, On some properties of the Robinson-Schensted correspondence, Proceedings of Hayashibara conference on special functions, 122-126 (1990)
  • [91] A.Kirillov, Representation of quantum groups, combinatorics, q-orthogonal polynomials and link invariants (Russian), 300p. (1990)
  • [92] A.Kirillov, N.Yu.Reshetikhin, q-Weyl group and a multiplicative formula for universal R-matrices, Comm. Math. Phys., 134(1990), 316-325 (1990)
  • [93] A.Kirillov, V.E.Korepin, The resonating valence bond in quasicristals (Russian), Algebra i Analiz, 1(1989), 47-76, translation in Leningrad Math. J. 1 (1990), n.2, 343-377. (1990)
  • [94] A.Kirillov, N.Yu.Reshetikhin, Representations of the algebra $U_q(sl(2))$, q-orthogonal polynomials and invariants of links, Adv. Series in Math. Phys., 7(1989), 285-339 (1989)
  • [95] A.Kirillov, Identities for the Rogers dilogarithmic function connected with simple Lie algebras (Russian), Zap. Nauch. Sem. LOMI, 164(1987), 121-133, translation in Journal of Soviet Math. 47 (1989), 2450-2458. (1989)
  • [96] A.Kirillov, Formulas for formfactors in the quantum sinh-Gordon model, Zap. Nauch. Sem. LOMI, 164(1987), 54-66, translation in Journal of Soviet Math. 47 (1989), 2403-2412. (1989)
  • [97] A.Kirillov, F.A.Smirnov, Formfactors in the SU(2)-invariant Thirring model, Zap. Nauch. Sem. LOMI, 164(1987), 80-120, translation in Journal of Soviet Math 47 (1989), 2423-2449 (1989)
  • [98] A.Kirillov, On the Kostka-Green-Foulkes polynomials and Clebsch-Gordan numbers, Journ. Geom. and Phys., 5(1), 365-389 (1988)
  • [99] A.Kirillov, N.Yu.Reshetikhin, Multiplicity of weight in irreducible tensor representations of a complete linear syperalgebra (Russian), Funct. Anal. and Applicat., 22(4), 84-85 (1988)
  • [100] A.Kirillov, F.A.Smirnov, Form-factors in O(3) nonlinear $sigma$-model, Int. Jour. Mod. Phys. A, 3(no.3), 731-741 (1988)
  • [101] S.V.Kerov, A.Kirillov and N.Yu.Reshetikhin, Combinatorics, the Bethe ansatz and representations of the symmetric group (Russian), Zap. Nauch. Sem. LOMI 155 (1986), 50-64, translation in Journal of Soviet Math. 41 (1988), 916-924.
  • [102] A.Kirillov, N.Yu.Reshetikhin, The Bethe ansatz and the combinatorics of Young tableaux (Russian), Zap. Nauch. Sem. LOMI 155 (1986), 65-115, translation in Journal of Soviet Math. 41 (1988), 925-955.
  • [103] A.Kirillov, T-invariance, CPT-invariants and local commutativity of the quantum $(chvarphi)_2$ model (Russian), Zap. Nauch. Sem. LOMI, 146(1985), 9-19 (1988)
  • [104] A.Kirillov, V.E.Korepin, Norms of bound states, Zap. Nauch. Sem. LOMI, 146(1985), 20-30 (1988)
  • [105] A.Kirillov, N.Yu.Reshetikhin, Properties of kernels of integral equations in the XXZ-model of arbitrary spin (Russian), Zap. Nauch. Sem. LOMI, 146(1985), 47-91 (1988)
  • [106] A.Kirillov, F.A.Smirnov, Solution of some combinatorial problems arising in the calculation of correlators in exactly solvable models, Zap. Nauch. Sem. LOMI, 164(1987), 67-79, translation in Journal of Soviet Math. (1987)
  • [107] A.Kirillov, F.A.Smirnov, A representation of the current algebra connected with SU(2)-invariant Thirring model, Phys. Lett. B, 198(4), 506-510 (1987)
  • [108] A.Kirillov, N.Yu.Reshetikhin, The Bethe ansatz and the combinatorics of Young tableaux, Zap. Nauch. Sem. LOMI, 155(1986), 65-115 (1987)
  • [109] A.Kirillov, N.Yu.Reshetikhin, Exact solution of the integrable XXZ Heisenberg model with arbitrary spin, I, J. Phys. A 20 (1987), 1565-1586.
  • [110] A.Kirillov, N.Yu.Reshetikhin, Exact solution of the integrable XXZ Heisenberg model with arbitrary spin, II, J. Phys. A, 20(1587-1597) (1987)
  • [111] A.Kirillov, N.Yu.Reshetikhin, Quantum inhomogeneous XXZ magnet and non-linear $sigma$-models, Proceedings of Paris-Meudon Colloquium, Paris, 1987, 235-257 (1987)
  • [112] A.Kirillov, N.Yu.Reshetikhin, Representation of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras (Russian), Zap. Nauch. Sem. LOMI, 160(1987), 211-221 (1987)
  • [113] A.Kirillov, Some generalization of the Abjankar-Moh theorem (Russisn), Proceedings of Algebraic Conference, L'vov, 1987, part 1, p.131.
  • [114] A.Kirillov, Completeness of states of the generalized Heisenberg magnet (Russian), Zap. Nauch. Sem. LOMI, 134(1985), 169-189 (1987)
  • [115] A.Kirillov, Convex polytops and formal groups (Russian), Zap. Nauch. Sem. LOMI, 75(1978), 87-90 (1987)
  • [116] A.Kirillov, N.Yu.Reshetikhin, The Yangians, Bethe ansatz and combinatorics, letters in mathematical physics, 12, 199-208 (1986)
  • [117] A.Kirillov, Exact solution of XXZ-Heisenberg model of the higher spin (Russian), Zap. Nauch. Sem. LOMI, 145(1985), 109-133, 2627-2643 (1986)
  • [118] A.Kirillov, N.Yu.Reshetikhin, Classification of the string solutions of Bethe equations in the XXZ-model of arbitrary spin (Russian), Zap. Nauch. Sem. LOMI, 146(1985), 31-46 (1985)
  • [119] A.Kirillov, S.V.Vostokov, Norm pairing in a two-dimensional local field, Zap. Nauch. Sem. LOMI, 132(1983), 76-84, translation in Journal of Soviet Math. 30 (1985), 1847-1853 (1985)
  • [120] A.Kirillov, Combinatorial identities and completeness of states for the Heisenberg magnet (Russian), Zap. Nauch. Sem. LOMI, 131(1983), 88-105, translation in Journal of Soviet Math. 30 (1985), 2298-3310. (1985)
  • [121] A.Kirillov, The Zeta function of the monodromy of a singular point of complete intersection (Russian), Zap. Nauch. Sem. LOMI, 112(1981), 112-119, translation in Journal of Soviet Math. 25 (1984), 1051-1056. (1984)
  • [122] A.Kirillov, Mixed Hodge structure of the isolated singularity of the hypersuface, Shot Communications, p.34 (1982)
  • [123] A.Kirillov, Formula for calculating the integer cohomology of the link of an isolated hypersurface singularity (Russian), Zap. Nauch. Sem. LOMI, 100(1980), 106-112, translation in Journal of Soviet Math. 19 (1982), 1695-1699. (1982)
  • [124] A.Kirillov, Milnor's number of isolated singularity of complete intersection (Russian), Proceedings of Algebraic conference, Leningrad, 1981, part 1, p.97.
  • [125] A.Kirillov, Commutative formal groups (Russian), Zap. Nauch. Sem. LOMI, 57(117-124) (1979)
  • [126] M.I.Bashmakov, A.Kirillov, Lutz filtration of formal groups, Izv. Acad. of Scien. USSR, 139(6), 1227-1239 (1979)
  • [127] A.Kirillov, Classification of the formal O-modules, Proceedings of Algebraic conference, Krasnoyarsk(1977), 76 (1977)
  • [128] A KIRILLOV, G NENASHEV, B SHAPIRO, A VAINTROB, INTRODUCING BIZONOTOPAL ALGEBRAS FOR UNDIRECTED GRAPHS (2024)
  • [129] AN Kirillov, Rigged Configurations and Unimodality, Representation Theory, Mathematical Physics, and Integrable Systems: In … (2021)
  • [130] AN Kirillov, T Scrimshaw, Hook-content formula using excited Young diagrams, arXiv preprint arXiv:1904.00371 (2019)
  • [131] G Nenashev, A Kirillov, Unimodular Zonotopal Algebra (2018)
  • [132] AN Kirillov, H Naruse, Construction of double Grothendieck polynomials of classical types using idCoxeter algebras, Tokyo Journal of Mathematics, 39(3), 695-728 (2017)
  • [133] AN Kirillov, G Nenashev, On$Q$-deformations of Postnikov-Shapiro algebras, Preprint (2017)
  • [134] AN Kirillov, On some quadratic algebras I 1/2: combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 12 (2016)
  • [135] AN Kirillov, Notes on Schubert, Grothendieck and key polynomials, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 12 (2016)
  • [136] AN Kirillov, R Sakamoto, Bethe's quantum numbers and rigged configurations, Nuclear Physics B, 905, 359-372 (2016)
  • [137] A BERENSTAIN, AN KIRILLOV, RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES (2016)
  • [138] AN Kirillov, On Double Schubert and Grothendieck polynomials for classical groups, arXiv preprint arXiv:1504.01469 (2015)
  • [139] AN Kirillov, Rigged Configurations and Catalan, Stretched Parabolic Kostka Numbers and Polynomials: Polynomiality, Unimodality and Logconcavity, arXiv preprint arXiv:1505.01542 (2015)
  • [140] AN Kirillov, On some combinatorial and algebraic properties of Dunkl elements (Topics in Combinatorial Representation Theory), 数理解析研究所講究録, 1795, 1-44 (2012)
  • [141] S CALCULUS, S FOMIN, AN KIRILLOV, QUADRATIC ALGEBRAS, DUNKL ELEMENTS, Advances in Geometry, 1 (2012)
  • [142] S Tanaka, H Katsura, N Kawashima, AN Kirillov, VE Korepin, Entanglement Entropy in Valence-Bond-Solid States on Symmetric Graphs (New Development of Numerical Simulations in Low-Dimensional Quantum Systems: From Density Matrix …, 物性研究, 95(6), 625-625 (2011)
  • [143] A Kirillov, T Maeno, Extended quadratic algebra and a model of the equivariant cohomology ring of flag varieties, St. Petersburg mathematical journal, 22(3), 447-462 (2011)
  • [144] H Katsura, N Kawashima, AN Kirillov, VE Korepin, S Tanaka, Entanglement in valence-bond-solid states on symmetric graphs, Journal of Physics A: Mathematical and Theoretical, 43(25) (2010)
  • [145] AN Kirillov, T Maeno, Nichols–Woronowicz model of coinvariant algebra of complex reflection groups, Journal of Pure and Applied Algebra, 214(4), 402-409 (2010)
  • [146] AN Kirillov, R Sakamoto, Generalized Energy Statistics and Kostka―Macdonald Polynomials, Discrete Mathematics & Theoretical Computer Science (2010)
  • [147] AN Kirillov, VE Korepin, The valence bond solid in quasicrystals, arXiv preprint arXiv:0909.2211 (2009)
  • [148] AN Kirillov, R Sakamoto, Paths and Kostka--Macdonald Polynomials, arXiv preprint arXiv:0811.1085 (2008)
  • [149] AN Kirillov, Skew divided difference operators and Schubert polynomials, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 3 (2007)
  • [150] A Kirillov, 放物型コストカ多項式, えびら多様体, 結晶基底とトロピカル組み合わせ論, 京都大学 (2006)
  • [151] K Hikami, A Kirillov, Hypergeometric generating function of 𝐿-function, Slater’s identities, and quantum invariant, St. Petersburg Mathematical Journal, 17(1), 143-156 (2006)
  • [152] AN Kirillov, T Maeno, A note on quantization operators on Nichols algebra model for Schubert calculus on Weyl groups, Letters in Mathematical Physics, 72, 233-241 (2005)
  • [153] AN Kirillov, T Maeno, On some noncommutative algebras related to K-theory of flag varieties. Part I, International Mathematics Research Notices, 60, 3753-3789 (2005)
  • [154] AN Kirillov, T Maeno, Noncommutative algebras related with Schubert calculus on Coxeter groups, European Journal of Combinatorics, 25(8), 1301-1325 (2004)
  • [155] K Hikami, AN Kirillov, Torus knot and minimal model, Physics Letters B 575 (3-4), 343-348 (2003)
  • [156] AN Kirillov, M Shimozono, A generalization of the Kostka–Foulkes polynomials, Journal of Algebraic Combinatorics, 15, 27-69 (2002)
  • [157] AN Kirillov, M Taneda, Generalized Umemura Polynomials and the Hirota-Miwa Equation, MathPhys Odyssey 2001: Integrable Models and Beyond In Honor of Barry M (2002)
  • [158] AN Kirillov, Introduction to tropical combinatorics, combinatorics, 82-150 (2001)
  • [159] AN Kirillov, Combinatorics of Young tableaux and configurations, Proceedings of the St. Petersburg Mathematical Society, 7, 17-98 (2001)
  • [160] JF Van Diejen, AN Kirillov, Determinantal formulas for zonal spherical functions on hyperboloids, Mathematische Annalen, 319(2), 215-234 (2001)
  • [161] AN Kirillov, N Liskova, Physics And Combinatorics, Procs Of The Nagoya 2000 Intl Workshop, World Scientific (2001)
  • [162] AN Kirillov, A Schilling, M Shimozono, Various representations of the generalized Kostka polynomials, The Andrews Festschrift: Seventeen Papers on Classical Number Theory and … (2001)
  • [163] AN Kirillov, N Liskova, Bethe's states for generalized XXX and XXZ models, Physics and Combinatorics, 151-163 (2001)
  • [164] AN Kirillov, A Tsuchiya, H Umemura, Physics And Combinatorics, Procs Of Nagoya 1999 Intl Wkshp, World Scientific (2001)
  • [165] A Tsuchiya, AN Kirillov, H Umemura, Physics and Combinatorics 1999: Procceedings [ie Proceedings] of the Nagoya 1999 International Workshop, Graduate School of Mathematics, Nagoya University, World Scientific (2001)
  • [166] AN Kirillov, New combinatorial formula for modified Hall-Littlewood polynomials, Contemporary Mathematics, 254, 283-334 (2000)
  • [167] AN Kirillov, T Maeno, Quantum double Schubert polynomials, quantum Schubert polynomials and Vafa–Intriligator formula, Discrete Mathematics 217 (1-3), 191-223 (2000)
  • [168] AN Kirillov, On Some Quadratic Algebras: Jucys—Murphy and Dunkl Elements, Calogero—Moser—Sutherland Models, 231-248 (2000)
  • [169] AN Kirillov, On some quadratic algebras, American Mathematical Society-Series 2, 201, 91-114 (2000)
  • [170] AN Kirillov, Generalization of the Gale–Ryser Theorem, European Journal of Combinatorics, 21(8), 1047-1055 (2000)
  • [171] AD Berenstein, AN Kirillov, Domino tableaux, Schützenberger involution and action of the symmetric group, Discrete Math 225 (1-3), 5-24 (2000)
  • [172] G Hatayama, AN Kirillov, A Kuniba, M Okado, T Takagi, Y Yamada, Character formulae of ̂sln-modules and inhomogeneous paths, Nuclear Physics B, 536(3), 575-616 (1998)
  • [173] AN Kirillov, A Kuniba, T Nakanishi, Skew Young diagram method in spectral decomposition of integrable lattice models II: Higher levels, Nuclear Physics B, 529(3), 611-638 (1998)
  • [174] AN Kirillov, t-deformation of quantum Schubert polynomials, arXiv preprint math/9802001 (1998)
  • [175] AN Kirillov, Combinatorial Formula for Modified Hall-Littlewood Polynomials (1998)
  • [176] AN Kirillov, A Kuniba, T Nakanishi, Skew Young diagram method in spectral decomposition of integrable lattice models, Communications in Mathematical Physics, 185(2), 441-465 (1997)
  • [177] AN Kirillov, NA Liskova, Completeness of Bethe's states for the generalized XXZ model, Journal of Physics A: Mathematical and General, 30(4) (1997)
  • [178] S Fomin, AN Kirillov, The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Discrete Mathematics 153 (1-3), 123-143 (1996)
  • [179] S Fomin, A Kirillov, Combinatorial 𝐵_ {𝑛}-analogues of Schubert polynomials, Transactions of the American Mathematical Society, 348(9), 3591-3620 (1996)
  • [180] AN Kirillov, M Noumi, $q$-Difference raising operators for Macdonald polynomials and the integrality of transition coefficients, q-alg (1996)
  • [181] AN Kirillov, NA Liskova, Completeness of Bethe's states for generalized $ XXZ $ model, II, arXiv preprint hep-th/9607012 (1996)
  • [182] AN Kirillov, A Lascoux, B Leclerc, JY Thibon, Séries génératrices pour les tableaux de dominos, Comptes rendus de l'Académie des sciences. Série 1, Mathématique, 318(5) (1994)
  • [183] AN Kirillov, A Lascoux, B Leclerc, JY THIBON, Generating series for domino tableaux, COMPTES RENDUS DE L'ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 318(5), 395-400 (1994)
  • [184] L Bégin, AN Kirillov, P Mathieu, MA Walton, Berenstein-Zelevinsky triangles, elementary couplings, and fusion rules, letters in mathematical physics, 28(4), 257-268 (1993)
  • [185] AN Kirillov, P Mathieu, D Sénéchal, MA Walton, Can fusion coefficients be calculated from the depth rule?, Nuclear Physics B, 391(3), 651-674 (1993)
  • [186] S Fomin, AN Kirillov, Yang-Baxter equation, symmetric functions and Grothendieck polynomials, arXiv preprint hep-th/9306005 (1993)
  • [187] AN Kirillov, Dilogarithm identities, partitions and spectra in conformal field theory, I, arXiv preprint hep-th/9212150 (1992)
  • [188] AN Kirillov, DECOMPOSITION OF SYMMETRIC AND EXTERIOR POWERS OF THE ADJOINT REPRESENTATION OF${\mathfrak g}l_N$1: UNIMODALITY OF PRINCIPAL SPECIALIZATION …, International Journal of Modern Physics A, 7(supp01b), 545-579 (1992)
  • [189] AN Kirillov, P Mathieu, D Senechal, MA Walton, Crystallising the depth rule for WZNW fusion coefficients, arXiv preprint hep-th/9209114 (1992)
  • [190] NA Liskova, AN Kirillov, Clebch-Gordan and Racah-Wigner coefficients for$U_q(SU(1,1))$, International Journal of Modern Physics A, 7(supp01b), 611-621 (1992)
  • [191] AN Kirillov, Fusion algebra and Verlinde's formula, arXiv preprint hep-th/9212084 (1992)
  • [192] LC Biedenharn, E Celeghini, VG Drinfeld, LD Faddeev, VS Retakh et al., First workshop" Quantum Groups, Deformation Theory and Representation Theory"(15-28 October 1990), Quantum Groups: Proceedings of Workshops Held in the Euler International … (1992)
  • [193] AN Kirillov, Decomposition of Symmetric and Exterior Powers of the Adjoint Representation of, Research Institute for Mathematical Sciences (1991)
  • [194] AN Kirillov, Decomposition of Symmetric and Exterior Powers of the Adjoint Representation of GlN., Kyoto University, Research Institute for Mathematical Sciences (1991)
  • [195] AN Kirillov, NY Reshetikhin, Representations of Yangians and multiplicities of occurrence of the irreducible components of the tensor product of representations of simple Lie algebras, Journal of Soviet Mathematics, 52, 3156-3164 (1990)
  • [196] AN Kirillov, VE Korepin, The resonating valence bond in quasicrystals, Leningrad Math. J, 1, 343-377 (1990)
  • [197] AN Kirillov, Identities for the Rogers dilogarithm function connected with simple Lie algebras, Journal of Soviet Mathematics, 47, 2450-2459 (1989)
  • [198] AN Kirillov, T-invariance, CPT-invariance, and local commutativity for the quantum (cosh ϕ)-model, Journal of Soviet Mathematics, 40, 6-13 (1988)
  • [199] AN Kirillov, NY Reshetikhin, Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum, Journal of Physics A: Mathematical and General, 20(6) (1987)
  • [200] AN Kirillov, NY Reshetikhin, Exact solution of the Heisenberg XXZ model of spin s, Journal of Soviet Mathematics, 35, 2627-2643 (1986)
  • [201] AN Kirillov, Combinatorial identities, and completeness of eigenstates of the Heisenberg magnet, Journal of Soviet Mathematics, 30, 2298-2310 (1985)
  • [202] S Tanaka, H Katsura, N aoki Kawashima, AN Kirillov, VE Korepin, Entanglement Entropy in Valence-Bond-Solid States on Symmetric Graphs
  • [203] AN Kirillov, Universal Dunkl operators: Algebra, Combinatorics, Graph Theory, Integrable Systems and LDT
  • [204] S FOMIN, AN KIRILLOV, COMBINATORIAL Bn-ANALOGUES
  • [205] AN Kirillov, Physics and combinatorics, 1999: proceedings of the Nagoya 1999 International Workshop
  • [206] AN Kirillov, T Maeno, Exterior differential algebras and at connections on Weyl groups
  • [207] AN Kirillov, N Liskova, Physics and combinatorics, 2000: proceedings of the Nagoya 2000 International Workshop
  • [208] AN Kirillov, M Shimozono, JOURNAL OF ALGEBRAIC COMBINATORICS
  • [209] AN Kirillov, T Maeno, Braided differential calculus and quantum Schubert calculus
  • [210] NA LISKOVA, AN KIRILLOV, CLEBSCH-GORDAN AND RACAH-WIGNER
  • [211] AN Kirillov, T Maeno, algebra of complex reflection groups

 

Update Time: 2025-08-12 17:00:05


Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060