北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA-Tsinghua可计算离散整体几何结构、拓扑材料和量子计算机讨论班 A generalization of Tutte's harmonic parameterization
A generalization of Tutte's harmonic parameterization
组织者
刘正伟 , 丘成桐 , 赵辉
演讲者
Edward Chien
时间
2022年04月29日 09:30 至 10:30
线上
Zoom 388 528 9728 (BIMSA)
摘要
Tutte’s harmonic parameterization method is a discrete realization of the Rado-Kneser-Choquet theorem and is a basic tool for many graphics and geometry processing pipelines. Given a mesh of disk topology, with boundary mapped to the boundary of a convex polygon, a simple linear solve results in a guaranteed bijective parameterization. In two recent graphics works, we generalize this parametrization method for locally injective “seamless” parameterizations of meshes of arbitrary topology (cut to a disk). Analogous boundary conditions are found for this scenario, and a discrete index argument on harmonic forms is used to prove the result. I will sketch this argument, note the relevance of seamless parameterizations to quadrilateral meshing, and discuss our numerical implementation of the result. Time permitting, possible extensions and related works on conformal mapping will be discussed. [1] A. Bright, E. Chien, O. Weber, Harmonic global parameterization with rational holonomy, ACM Transactions on Graphics Vol. 36, No. 4 (SIGGRAPH 2017) [2] E. F. Hefetz, E. Chien, O. Weber, A subspace method for fast locally-injective harmonic mapping, Computer Graphics Forum Vol. 38, No. 2 (Eurographics 2019)
演讲者介绍
Edward Chien is an Assistant Professor of Computer Science at Boston University, having joined recently in 2020. His research applies tools and insights from differential geometry and topology to solve problems in graphics, computational engineering, and machine learning. His work has been published in venues such as SIGGRAPH, SGP, NeurIPS, and ICML. Prior to BU, he was a Postdoc in the Geometric Data Processing group at MIT, led by Justin Solomon, and in Ofir Weber’s lab at Bar-Ilan University. He earned his PhD in Mathematics from Rutgers in 2015 working with Feng Luo.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060