北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA-Tsinghua可计算离散整体几何结构、拓扑材料和量子计算机讨论班 Mesh Generation Using Computational Conformal Geometry
Mesh Generation Using Computational Conformal Geometry
组织者
刘正伟 , 丘成桐 , 赵辉
演讲者
顾险峰
时间
2022年04月01日 09:30 至 10:30
线上
Zoom 388 528 9728 (BIMSA)
摘要
esh generation plays a fundamental role in CAD, CAE and many engineering fields. After tens of years of intensive research, meshing on surfaces and volumes with complicated topological and geometric features remains challenging. The major difficulties include 1. complex topology and geometry of the input shapes; 2. anisotropy; 3. global structured meshes with high conformality and so on. In this talk, we propose a systematic method to tackle these challenges based on modern topology and geometry theories, especially conformal geometry and algebraic geometry. The method is rigorous with solid foundation, practical with broad applications in manufacturing industry and medical imaging field. 1. For shapes with complex topology and geometry, we can conformally map them to canonical planar domains and use 2D algorithms to generate high quality planar meshes, then pull the meshes back to the surfaces. The key point is that the mapping is angle-preserving (conformal) , therefore it preserves the quality of the meshes from 2D to 3D. The mapping is produced by Ricci flow method, which is the tool used by Perelman to prove Poincare's conjecture. 2.For anisotropic requirements, we can use quasi-conformal geometric methods to handle them. The anisotropic conditions are encoded to the so-called Beltrami coefficient, which can be used to construct an auxiliary Riemannian metric. Under the auxiliary metric, anisotropic meshes are converted to isotropic meshes. 3. For globally structured meshes, e.g. quad or hex meshes, the configuration of the singularities are crucial. For a long time, the placements of singularities are mainly heuristic. We have found the PDEs to govern the singularities based on Abel-Jacobi theory in algebraic geometry, and developed an automatic algorithm to generate quad-meshes. Then we extend the algorithm for hex-mesh generation.
演讲者介绍
David Gu is a New York Empire Innovation Professor at the Department of Computer Science, Stony Brook University. He received his Ph.D degree from the Department of Computer Science, Harvard University in 2003, supervised by the Fields medalist, Prof. Shing-Tung Yau and B.S. degree from the Tsinghua University, Beijing, China in 1995. His research focuses on applying modern geometry in engineering and medical fields. With Prof. Yau and his collaborators, David systematically develops discrete theories and computational algorithms in the interdisciplinary field: Computational Conformal Geometry, Computational Optimal Transportation, and applied them in engineering and medical imaging fields.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060