BIMSA >
BIMSA-Tsinghua量子对称讨论班
Twisted/untwisted correspondence in permutation orbifold conformal field theory
Twisted/untwisted correspondence in permutation orbifold conformal field theory
演讲者
归斌
时间
2022年06月29日 14:00 至 15:30
地点
1120
线上
Zoom 638 227 8222
(BIMSA)
摘要
Roughly speaking, an orbifold CFT is a CFT with a (finite) automorphism group G acting on a vertex operator algebra (VOA) or a conformal net. The representation theory of orbifold CFTs focuses on the VOA modules “twisted” by elements of G, as well as the conformal blocks associated to these twisted modules. In general, twisted theories contain more information than the untwisted ones. But in the case that G is the symmetric group $S_n$ (or its finite subgroup) acting by permutation on the tensor product $V^{\otimes n}$ of n identical VOAs $V$, the twisted modules and their conformal blocks can be constructed from the untwisted ones, and vice versa in some cases. In this talk, I will explain this “permutation-twisted/untwisted correspondence” in the VOA context.
Reference: arXiv:2111.04662
演讲者介绍
归斌现为清华大学丘成桐数学中心助理教授。本科毕业于上海交通大学。博士毕业于美国Vanderbilt University,师从Vaughan Jones。博士后工作于美国Rutgers University。
归斌的研究兴趣为顶点算子代数,以及与其相关的泛函分析与算子代数、张量范畴等问题。在顶点算子代数表示范畴的酉性(unitarity)方面、以及其与共形网(conformal nets)的表示范畴的等价性方面都首先做出系统性的研究。多篇论文发表于Communications in Mathematical Physics, Transactions of AMS, IMRN等期刊。