北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA Digital Economy Lab Seminar A Modest Proposal: Use Deep Learning for the Transformation Problem in Marxist Economics
A Modest Proposal: Use Deep Learning for the Transformation Problem in Marxist Economics
组织者
高瑞泽 , 韩立岩 , 李振 , 龙飞 , 汤珂
演讲者
William Vickery
时间
2025年06月27日 15:00 至 16:00
地点
A3-2a-302
线上
Zoom 637 734 0280 (BIMSA)
摘要
The “AI for Science” push has produced remarkable results. Alphafold, which solved millions of protein structures in one fell swoop, is the most well known. DeePKS, DeePMD, Trajectorynet, DeePN2 are merely a few representative samples of a litany of new applications of deep learning tools to solving high dimensional problems from chemistry and biology resistant to classical algorithms. Economic data sets, such as input-output tables or tables of prices, are similarly high dimensional. Adam Smith acknowledged and Marx posited as foundational the idea that socially necessary labor time can be used as a unit of measure for the value for commodities. Both suggested that the value of a commodity should act as a constraint on its price. The transformation problem posits that prices should be proportional to the socially necessary labor time involved in the entire process of production. Samuelson wrote a seminal paper claiming to prove the transformation problem is impossible to solve. However, Ian Wright, Emmanuel D. Farjoun, Moshé Machover, David Zachariah, and other Marxist economists have posited alternative solutions. Is it possible to resolve this issue using big data and deep learning? We introduce the background of the topic, and we make some suggestions in this direction.
演讲者介绍
I graduated from University of Illinois at Chicago with a PhD in pure math. The topic of my dissertation was the stochastic heat equation on the torus. Past publications focus on Rough Path and Stochastic Analysis. My research interests include interdisciplinary topics such as AI.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060