北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA-Tsinghua量子对称讨论班 Wreath-like product groups and their von Neumann algebras: W*-superrigidity and outer automorphism groups
Wreath-like product groups and their von Neumann algebras: W*-superrigidity and outer automorphism groups
组织者
黄林哲 , 刘正伟 , Sébastien Palcoux , 王亦龙 , 吴劲松
演讲者
Adrian Ioana
时间
2025年03月05日 10:30 至 12:00
地点
A3-3-301
线上
Zoom 242 742 6089 (BIMSA)
摘要
Wreath-like products are a new class of groups, which are close relatives of the classical wreath products. Examples of wreath-like product groups arise from every non-elementary hyperbolic groups by taking suitable quotients. As a consequence, unlike classical wreath products, many wreath-like products have Kazhdan's property (T). 

In this talk, I will focus on two main rigidity results for von Neumann algebras of wreath-like product groups obtained in joint work with Ionut Chifan, Denis Osin and Bin Sun. First, we show that any ICC group G in a natural family of wreath-like products with property (T) is W*-superrigid: the group II1 factor L(G) remembers entirely the isomorphism class of G. This provides the first examples of W*-superrigid groups with property (T), confirming Connes’ rigidity conjecture from the early 1980s for these groups. 

Second, for a wider class wreath-like products with property (T), we show that any isomorphism of their group von Neumann algebras arises from an isomorphism of the groups.  As an application, we prove that any countable group can be realized as the outer automorphism group of L(G), for an ICC property (T) group G. This gives the first calculations of outer automorphism groups of II1 factors arising from property (T) groups, and can be viewed as a converse of Connes’ 1980 result showing that any such outer automorphism group is countable.

References:
arXiv:2111.04708 (Ann. of Math. 2023)
arXiv:2304.07457
arXiv:2402.19461
演讲者介绍
Adrian Ioana is a Professor at the University of California, San Diego, acclaimed for his groundbreaking work in functional analysis, operator algebras, and ergodic theory, with a particular focus on von Neumann algebras and group actions. He was an invited speaker at the International Congress of Mathematicians in 2018.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060