北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA Digital Economy Lab Seminar High-dimensional imbalanced financial distress prediction: A multi-heterogenous self-paced ensemble learning framework
High-dimensional imbalanced financial distress prediction: A multi-heterogenous self-paced ensemble learning framework
组织者
韩立岩 , 李振 , 刘庆富 , 龙飞 , 汤珂
演讲者
高瑞泽
时间
2024年09月30日 15:20 至 16:20
地点
A3-2-303
线上
Zoom 230 432 7880 (BIMSA)
摘要
Financial distress prediction (FDP) is a crucial research field for researchers, stakeholders, and government regulators. However, researchers often face challenges such as high dimensional problem, class imbalanced problem, and parameter optimization problem when dealing with FDP tasks. This makes it difficult for the model to effectively identify high-risk companies. To address these problems, we propose a novel multi-heterogenous self-paced ensemble learning framework for financial distress prediction, named FinMHSPE. Our proposed model employs a pair comparison of multiple time span data and the maximum relevance and minimum redundancy (mRMR) method to determine the optimal feature subset, which can effectively overcome the high dimensional problem. We also propose the MHSPE model to iteratively learn the most informative majority data samples for dealing with the class imbalanced problem. Finally, we employ the particle swarm optimization (PSO) algorithm to determine the optimal parameters of the ensemble learning method. To verify the effectiveness of our proposed model, we conduct a series of experiments on the financial dataset of Chinese listed companies. The empirical results demonstrate that our model significantly outperforms competing models. Furthermore, we identify some useful features for improving FDP model performance, such as the features of the company’s information and growth capability.
演讲者介绍
Ruize Gao is Post-Doctoral Fellow at Beijing Institute of Mathematical Sciences and Applications and Tsinghua University. His research interests include digital economy, data economy and data mining. He has published in leading journals such as Information Sciences, Knowledge-based Systems, Expert Systems with Applications, Technology in Society, International Journal of Accounting Information Systems. He hosts one funding project under the China Postdoctoral Science Foundation.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060