北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Differential Geometry Seminar A special class of k-harmonic maps inducing calibrated fibrations.
A special class of k-harmonic maps inducing calibrated fibrations.
组织者
深谷賢治 , 杨琳 , 塞巴斯蒂安·赫勒 , 河井公大朗
演讲者
安东·伊利亚申科
时间
2024年09月24日 15:00 至 16:00
地点
A7-201
线上
Zoom 518 868 7656 (BIMSA)
摘要
We consider two special classes of k-harmonic maps between Riemannian manifolds which are related to calibrated geometry, satisfying a first order fully nonlinear PDE. The first is a special type of weakly conformal map u:(L^k,g)→(M^n,h) where k≤n and α is a calibration k-form on M. Away from the critical set, the image is an α-calibrated submanifold of M. These were previously studied by Cheng-Karigiannis-Madnick when α was associated to a vector cross product, but we clarify that such a restriction is unnecessary. The second, which is new, is a special type of weakly horizontally conformal map u:(M^n,h)→(L^k,g) where n≥k and α is a calibration (n−k)-form on M. Away from the critical set, the fibres u^{−1}{u(x)} are α-calibrated submanifolds of M. We also review some previously established analytic results for the first class; we exhibit some explicit noncompact examples of the second class, where (M,h) are the Bryant-Salamon manifolds with exceptional holonomy; we remark on the relevance of this new PDE to the Strominger-Yau-Zaslow conjecture for mirror symmetry in terms of special Lagrangian fibrations and to the G_2 version by Gukov-Yau-Zaslow in terms of coassociative fibrations; and we present several open questions for future study.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060