北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Differential Geometry Seminar Index and total curvature of minimal surfaces in noncompact symmetric spaces and wild harmonic bundles
Index and total curvature of minimal surfaces in noncompact symmetric spaces and wild harmonic bundles
组织者
深谷賢治 , 杨琳 , 塞巴斯蒂安·赫勒 , 河井公大朗
演讲者
Qiongling Li
时间
2024年11月26日 15:00 至 16:00
地点
A7-101
线上
Zoom 638 227 8222 (BIMSA)
摘要
We prove two main theorems about equivariant minimal surfaces in arbitrary nonpositively curved symmetric spaces extending classical results on minimal surfaces in Euclidean space. First, we show that a complete equivariant branched immersed minimal surface in a nonpositively curved symmetric space of finite total curvature must be of finite Morse index. It is a generalization of the theorem by Fischer-Colbrie, Gulliver-Lawson, and Nayatani for complete minimal surfaces in Euclidean space. Secondly, we show that a complete equivariant minimal surface in a nonpositively curved symmetric space is of finite total curvature if and only if it arises from a wild harmonic bundle over a compact Riemann surface with finite punctures. Moreover, we deduce the Jorge-Meeks type formula of the total curvature and show it is an integer multiple of $2\pi/N$ for $N$ only depending on the symmetric space. It is a generalization of the theorem by Chern-Osserman for complete minimal surfaces in Euclidean n-space. This is joint work with Takuro Mochizuki (RIMS).
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060