北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Willmore Workshop at BIMSA
Willmore Workshop at BIMSA
组织者
塞巴斯蒂安·赫勒
演讲者
Josef Dorfmeister ( Technical University of Munich )
杨琳 ( 北京雁栖湖应用数学研究院 )
Yuxiang Li ( 清华大学 )
Peng Wang ( Fujian Normal University )
Zhenxiao Xie ( 北京航空航天大学 )
日期
2023年11月14日 至 15日
位置
Weekday Time Venue Online ID Password
周二,周三 09:30 - 17:30 A3-4-301 - - -
日程安排
时间\日期 11-14
周二
11-15
周三
09:30-10:30 Zhenxiao Xie
11:00-12:00 杨琳
13:00-14:00 Yuxiang Li
14:30-15:30 Peng Wang
16:30-17:30 Josef Dorfmeister

*本页面所有时间均为北京时间(GMT+8)。

议程
    2023-11-14

    13:00-14:00 Yuxiang Li

    Generalized Helein's Convergence Theorem

    Helein's Convergence Theorem is a powerful tool for solving variational problems related to the Willmore function. The theorem asserts that a conformal immersion from a 2-disk in $R^n$ with small $L^2$-norm of the second fundamental form, will either converge to a conformal immersion or collapse to a point. When the collapse occurs, it is natural to hope that a rescaled sequence will converge to a conformal immersion. However, this is not generally true. In this talk, we will present sufficient conditions under which a rescaled sequence converges to a conformal immersion when the $L^2$-norm of the second fundamental form is small. Furthermore, we will establish an intrinsic version of Helein's Convergence Theorem.

    14:30-15:30 Peng Wang

    Willmore surfaces in spheres: geometry and integrable system

    In this talk we will show how the DPW method in integrable system can be used in the study of Willmore surfaces in spheres. Moreover, some geometric properties of Willmore surfaces from the DPW methods, including characterizations of minimal surfaces in space forms, Willmore surfaces with symmetries, etc. Some interesting new examples of Willmore surfaces can be derived in this way. This is based on joint works with Prof. Dorfmeister and Prof. Changping Wang.

    16:30-17:30 Josef Dorfmeister

    The loop group method for constrained Willmore surfaces

    We will recall the description of conformal maps and the description of harmonic maps in terms of Minkowski frames and loops of Minkowski frames respectively. Starting from a result of Burstall and Calderbank we will outline a generalized Weierstrass representation (= generalized loop group method) for constrained Willmore surfaces. This is joint work with Idrisse Khemar.

    2023-11-15

    09:30-10:30 Zhenxiao Xie

    Willmore surfaces in 4-dimensional conformal manifolds

    In this talk, we show the first and second variational formulas of the Willmore functional for closed surfaces in 4-dimensional conformal manifolds. As an application, the Clifford torus in CP^2 is proved to be strongly Willmore-stable. This provides a strong support to the conjecture of Montile and Urbano, which states that the Clifford torus in CP^2 minimizes the Willmore functional among all tori. In 4-dimensional locally symmetric spaces, by constructing some holomorphic differentials, we prove that among all minimal 2-spheres only those super-minimal ones can be Willmore. This is a joint work with Prof. Changping Wang.

    11:00-12:00 杨琳

    Constrained Willmore Stability of 2-lobed Delaunay tori in the 3-sphere

    Homogeneous and Delaunay tori are the only embedded tori in the 3-sphere of constant mean curvature. By a result of Schätzle and Ndiaye, the constrained Willmore minimizers of rectangular conformal classes near the square class are homogeneous. At discrete values, the family of homogeneous tori allows bifurcation into n-lobed Delaunay tori. In this talk, I show that the 2-lobed Delaunay tori are stable as constrained Willmore surfaces in 3-space and minimizes the Willmore energy in the class of isothermic surfaces.

北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060