北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Geometric Structures
Geometric Structures
组织者
亚历杭德罗·希尔·加西亚 , 杨琳 , 塞巴斯蒂安·赫勒
演讲者
拉尔斯•安德森 ( 北京雁栖湖应用数学研究院 )
Xuezhang Chen ( 南京大学 )
Siqi He ( 北京雁栖湖应用数学研究院-中国科学院大学 )
Nianzi Li ( 清华丘成桐数学科学中心 )
格里戈里·帕帕亚诺夫 ( 北京雁栖湖应用数学研究院 )
Shicheng Xu ( Capital Normal University )
Quanting Zhao ( Central China Normal University )
日期
2024年12月01日 至 02日
位置
Weekday Time Venue Online ID Password
周一,周日 09:00 - 18:00 A6-101 - - -
日程安排
时间\日期 12-01
周日
12-02
周一
09:15-10:15 格里戈里·帕帕亚诺夫
09:45-10:45 Xuezhang Chen
10:30-11:30 拉尔斯•安德森
11:00-12:00 Quanting Zhao
14:00-15:00 Nianzi Li
15:00-16:00 Shicheng Xu
16:30-17:30 Siqi He

*本页面所有时间均为北京时间(GMT+8)。

议程
    2024-12-01

    09:45-10:45 Xuezhang Chen

    Green function of GJMS operator on the sphere and its rigidity

    In the first part, we derive an explicit formula of the Green function for the generic GJMS operator on the sphere. Our tools are the spectral theory of elliptic operators and Gegenbauer polynomials. In the second part, we study a rigidity problem of Green functions for GJMS operator of orders two and four on a hypersurface in Euclidean space. Especially, in lower dimensions, the positive mass theorem and Hartman-Nirenberg theorem are applied to obtain the strong rigidity theorem for the Green function of conformal Laplacian. This is jointly with Yalong Shi.

    11:00-12:00 Quanting Zhao

    BKL and beyond

    The Kähler-like condition is introduced by Yang-Zheng and Angella-Otal-Ugarte-Villacampa, which says the curvature of a metric connection has the same symmetry as the one of a Kähler metric. In this talk, we mainly discuss when the Bismut-Strominger connection is Kähler-like, BKL for short, and show several structural theorems on BKL manifolds and their relevant manifolds.

    14:00-15:00 Nianzi Li

    Metric asymptotics on the irregular Hitchin moduli space

    In this talk, we consider the moduli space of rank-two Higgs bundles with irregular singularities over the projective line. Along a curve of certain type, we show that Hitchin's hyperkähler metric is asymptotic to a simpler semi-flat metric at an exponential rate, based on the foundational works of Fredrickson, Mazzeo, Mochizuki, Swoboda, Weiss, and Witt. In our gluing construction of the harmonic metric, we introduce a new building block for weakly parabolic singularities with trivial flags. In dimension four, we explicitly compute the asymptotic limit of the semi-flat metric, which is of type ALG or ALG*. Joint work with Gao Chen.

    15:00-16:00 Shicheng Xu

    Rigidity for Einstein manifolds under bounded covering geometry

    We prove three rigidity results for Einstein manifolds with bounded covering geometry. (1) any almost flat manifold (M,g) must be flat if it is Einstein, i.e. Ric=Lg for some real number L. (2) A compact Einstein manifold with a non-vanishing and almost maximal volume entropy is hyperbolic. (3) A compact Einstein manifold admitting a uniform local rewinding almost maximal volume is isometric to a space form. This is a joint work with Cuifang Si.

    16:30-17:30 Siqi He

    Z2 harmonic 1-forms and related topology and geometric problems

    Z2 harmonic 1-forms are generalize quadratic differentials on Riemann surfaces to higher dimensions, establishing deep connections with gauge theory, low-dimensional topology, and calibrated geometry. Taubes' work indicates that Z2 harmonic 1-forms are the natural boundaries for various gauge theory equations, including those for flat SL(2,C) connections. On the first half of the talk, we will introduce the background of this topic and discuss known results. On the second half of the talk, we will discuss a question introduced by Taubes-Wu, about the existence and rigidity problem of the tangent cone model of the Z2 harmonic 1-form, which will be based on joint work with J.Chen. We will explain how to apply finite group representation theory to this question.

    2024-12-02

    09:15-10:15 格里戈里·帕帕亚诺夫

    A dg-Lie algebra approach to deformation of differential forms, after R. Goto

    Most of the special holonomy metrics on manifolds could be defined by specified a collection of closed differential forms satisfying some linear algebraic property. Using this observation, Ryushi Goto was able to write down a series of equations whose solutions correspond to deformations of these special holonomy metrics, and, in compact cases, to show their solvability, providing a unified treatment to previously known unobstructedness theorems of Bogomolov-Tian-Todorov (in the Sp and SU cases), and Joyce (in the G2 and Spin(7) cases). I want to show how to reinterpret Goto's equations as Maurer-Cartan equations in a certain dg-Lie algebra. The well-developed theory of Maurer-Cartan equation allows for an easy reproval of Goto's theorem (or at least its formal version), as well as suggests potential applicability of this method to other geometric structures.

    10:30-11:30 拉尔斯•安德森

    Gravitational instantons and special geometry

    Gravitational instantons are Ricci flat complete Riemannian 4-manifolds with at least quadratic curvature decay. Classical examples include the Taub-NUT and the Euclidean Kerr instanton. A classification of half-flat instantons is known but the uniqueness problem remains open in general. In this talk I will present some recent results the classification of $S^1$-symmetric instantons obtained using an identity of Israel-Robinson type and the $G$-signature theorem, together with recent results on instantons with special geometry.

北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060