北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > YMSC-BIMSA量子信息讨论班 Towards Provably Efficient Quantum Algorithms for Nonlinear Dynamics and Large-scale Machine Learning Models
Towards Provably Efficient Quantum Algorithms for Nonlinear Dynamics and Large-scale Machine Learning Models
组织者
刘正伟
演讲者
Jin-Peng Liu
时间
2023年04月07日 09:30 至 10:30
地点
JCY-1
线上
Tencent 494 8360 9451 (2023)
摘要
Nonlinear dynamics play a prominent role in many domains and are notoriously difficult to solve. Whereas previous quantum algorithms for general nonlinear equations have been severely limited due to the linearity of quantum mechanics, we gave the first efficient quantum algorithm for nonlinear differential equations with sufficiently strong dissipation. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in the evolution time. We also established a lower bound showing that nonlinear differential equations with sufficiently weak dissipation have worst-case complexity exponential in time, giving an almost tight classification of the quantum complexity of simulating nonlinear dynamics.   Furthermore, we designed end-to-end quantum machine learning algorithms, combining efficient quantum (stochastic) gradient descent with sparse state preparation and sparse state tomography. We benchmarked instances of training sparse ResNet up to 103 million parameters, and identify the dissipative and sparse regime at the early phase of fine-tuning could receive quantum enhancement. Our work showed that fault-tolerant quantum algorithms could potentially contribute to the scalability and sustainability of most state-of-the-art, large-scale machine learning models.   References: [1] Liu et al. Efficient quantum algorithm for dissipative nonlinear differential equations, Proceedings of the National Academy of Science 118, 35 (2021), arXiv:2011.03185. [2] Liu et al. Towards provably efficient quantum algorithms for large-scale machine learning models, arXiv:2303.03428.
演讲者介绍
Jin-Peng is a Simons Quantum Postdoctoral Fellow at Simons Institute, UC Berkeley in 2022-2023 (hosted by Umesh Vazirani and Lin Lin). He will be a Postdoctoral Associate at the Center for Theoretical Physics, MIT in 2023-2024 (hosted by Aram Harrow). He received a Ph.D. in applied mathematics at University of Maryland in 2022 spring (advised by Andrew Childs). He received the NSF QISE-NET Triplet Award in 2021. He received a B.S. in math at Beihang University and Chinese Academy of Sciences Hua Loo Keng Class (supervised by Ya-xiang Yuan and Cong Sun). His research focuses on Quantum for Science. He attempts to develop, analyze, and optimize provably efficient quantum algorithms for computational challenges in natural and data sciences, including quantum simulations, quantum ODE/PDE solvers, q-sampling, and quantum gradient descent, toward end-to-end applications in areas such as quantum chemistry, biology and epidemiology, fluid dynamics, finance, statistics, optimization, and machine learning.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060