北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Algebraic Topology & Application Seminar Recurrence formula, positivity and polytope basis in cluster algebras via Newton polytopes
Recurrence formula, positivity and polytope basis in cluster algebras via Newton polytopes
组织者
吴杰
演讲者
李方
时间
2022年01月17日 10:30 至 11:30
地点
中会议室一
摘要
In this talk, we study the Newton polytopes of F-polynomials in totally sign-skew-symmetric cluster algebras and generalize them to a larger set consisting of polytopes N(h) associated to vectors h in Z^n as well as S consisting of polytope functions \rho_h corresponding to N(h). The main contribution contains that (i) obtaining a recurrence construction of the Laurent expression of a cluster variable in a cluster from its g-vector; (ii) proving the subset P of S is a strongly positive basis of U(A) consisting of certain indecomposable universally positive elements, which is called as the polytope basis; (iii) constructing some explicit maps among corresponding F-polynomials, g-vectors and d-vectors to characterize their relationship. As an application of (i), we give an affirmation to the positivity conjecture of cluster variables in a totally sign-skew-symmetric cluster algebra, which in particular provides a new method different from that given in \cite{GHKK} to present the positivity of cluster variables in the skew-symmetrizable case. As another application, a conjecture on Newton polytopes posed by Fei is answered affirmatively. For (ii), we know that in rank 2 case, $\mathcal{P}$ coincides with the greedy basis introduced by Lee, Li and Zelevinsky. Hence, we can regard $\mathcal{P}$ as a natural generalization of the greedy basis in general rank. As an application of (iii), the positivity of denominator vectors associated to non-initial cluster variables, which was first come up as a conjecture in \cite{FZ4}, is proved in a totally sign-skew-symmetric cluster algebra. This is a joint work with Jie Pan.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060