北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > 范畴和拓扑序讨论班 Higher Dimensional Topological Order, Higher Category and A Classification in 3+1D
Higher Dimensional Topological Order, Higher Category and A Classification in 3+1D
组织者
郑浩
演讲者
兰天
时间
2022年03月16日 13:30 至 15:00
地点
1131
线上
Tencent 660 7557 3050 ()
摘要
Topological orders are gapped quantum liquid states without any symmetry. Most of their properties can be captured by investigating topological defects and excitations of various dimensions. Topological defects in n dimensions naturally form a (weak) n-category. In particular, anomalous topological order (boundary theory) is described by fusion n-category and anomaly-free topological order (bulk) is described by non-degenerate braided fusion n-category. Holographic principle works for topological orders: boundary always has a unique bulk. Another important property in 3+1D or higher is that point-like excitations must have trivial statistics; they must carry representations of a certain group. Such a "gauge group" is hidden in every higher dimensional topological order. In 3+1D, condensing point-like excitations leads to a canonical boundary which in turn determines the bulk topological order. By studying this boundary, a rather simple classification is obtained: 3+1D topological orders are classified by the above "gauge group" together with some cocycle twists. These ideas would also play an important role in dimensions higher than 3+1D and in the study of higher categories, topological quantum field theories and other related subjects.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060