北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Integrable systems blackboard seminar Quantisation Ideals - a novel approach to the old problem of quantisation
Quantisation Ideals - a novel approach to the old problem of quantisation
组织者
尼古拉·莱舍提金 , Bart Vlaar , 许睿捷
演讲者
Alexander Mikhailov
时间
2024年04月01日 11:30 至 13:00
地点
A4-1
摘要
We propose to revisit the problem of quantisation and look at it from an entirely new angle, focusing on the quantisation of dynamical systems themselves, rather than of their Poisson structures. We begin with a dynamical system defined on a free associative algebra $\fA$ generated by non-commutative dynamical variables $x_1,x_2,\ldots$, and reduce the problem of quantisation to the problem of studying two-sided quantisation ideals. The dynamical system defines a derivation of the algebra $\p\,:\,\fA\mapsto\fA$. By definition, a two-sided ideal $\cI$ of $\fA$ is said to be a \emph{quantisation ideal} for $(\fA,\p)$ if it satisfies the following two properties: 1. The ideal $\cI$ is $\p$-stable: $\p(\cI)\subset\cI;$ 2. The quotient $\fA/\cI$ admits a basis of normally ordered monomials in the dynamical variables. The multiplication rules in the quantum algebra $\fA/\cI$ are manifestly associative and consistent with the dynamics. We found first examples of bi-quantum systems which are quantum counterparts of bi-Hamiltonian systems in the classical theory. Moreover, the new approach enables us to define and present first examples of non-deformation quantisations of dynamical systems, i.e. quanum systems that cannot be obtained as deformations of a classical dynamical system with commutative variables. In order to apply the novel approach to a classical system we need firstly lift it to a system on a free algebra preserving the most valuable properties, such as symmetries, conservation laws, or Lax integrability. The new approach sheds light on the long standing problem of operator's ordering. We will use the well-known Volterra hierarchy and stationary KdV equations to illustrate the methodology. References: [1] A.V. Mikhailov. Quantisation ideals of nonabelian integrable systems. Russ. Math. Surv., 75(5):199, 2020. [2] V. M. Buchstaber and A. V. Mikhailov. KdV hierarchies and quantum Novikov’s equations. Ocnmp:12684 - Open Communications in Nonlinear Mathematical Physics, February 15, 2024, Special Issue in Memory of Decio Levi. [3] S. Carpentier, A.V. Mikhailov and J.P. Wang. Quantisation of the Volterra hierarchy. Lett. Math. Phys., 112:94, 2022. [4] Sylvain Carpentier, Alexander V. Mikhailov, and Jing Ping Wang. Hamiltonians for the quantised Volterra hierarchy. arXiv:2312.12077, 2023.(Submitted to Nonlinearity)
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060