北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
河套数学与交叉学科研究院
BIMSA > BIMSA/Qiuzhen Colloquium Series on the Mathematics of AI Causal inference and experimental design in two-sided markets
Causal inference and experimental design in two-sided markets
组织者
沙伊莱什·拉尔 , 邬荣领
演讲者
Hongtu Zhu
时间
2024年03月19日 09:00 至 11:00
地点
Online
线上
Zoom 230 432 7880 (BIMSA)
摘要
Many modern tech companies, such as Google, Uber, and Didi, utilize online experiments (also known as A/B testing) to evaluate new policies against existing ones. Analyzing the causal relationship between platform policies and outcomes of interest is of great importance to improve key platform metrics. This study focuses on capturing dynamic treatment effects in complex temporal/spatial experiments and designing informative experiments. We propose a temporal/spatio-temporal varying coefficient decision process (VCDP) model to characterize dynamic treatment effects. Average treatment effects are decomposed into direct and indirect effects (DE and IE) with estimation and inference procedures developed for both. Meanwhile, we establish a framework for calculating conditional quantile treatment effects (CQTE) based on independent characteristics. Notably, we demonstrate that dynamic CQTE equals the sum of individual CQTEs across time under specific model assumptions. Additionally, we propose three optimal allocation strategies for sequential treatments in dynamic settings to minimize variance in treatment effect estimation. Estimation procedures based on off-policy evaluation (OPE) methods are developed. Theoretical properties of the proposed methods are established, including weak convergence, asymptotic power, and optimality of the proposed treatment allocation design. Extensive simulations and real data analyses support the usefulness of the proposed methods.
演讲者介绍
Hongtu Zhu is a tenured professor of biostatistics, statistics, computer science, and genetics at University of North Carolina at Chapel Hill. He was DiDi Fellow and Chief Scientist of Statistics at DiDi Chuxing between 2018 and 2020 and was Endowed Bao-Shan Jing Professorship in Diagnostic Imaging at MD Anderson Cancer Center between 2016 and 2018. He is an internationally recognized expert in statistical learning, medical image analysis, precision medicine, biostatistics, artificial intelligence, and big data analytics. He has been an elected Fellow of American Statistical Association and Institute of Mathematical Statistics since 2011. He received an established investigator award from Cancer Prevention Research Institute of Texas in 2016 and received the INFORMS Daniel H. Wagner Prize for Excellence in Operations Research Practice in 2019. He has published more than 320+ papers in top journals including Nature, Science, Cell, Nature Genetics, PNAS, AOS, JASA, and JRSSB, as well as 55+ conference papers in top conferences including NeurIPS, AAAI, KDD, ICDM, MICCAI, and IPMI.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060