北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
河套数学与交叉学科研究院
BIMSA > BIMSA-HSE Joint Seminar on Data Analytics and Topology Analysis of brain networks with blurred magnitude homology
Analysis of brain networks with blurred magnitude homology
组织者
瓦西里·戈尔布诺夫 , Taras Panov , 尼古拉·莱舍提金 , 吴杰 , 邬荣领 , 杨卓科
演讲者
Alexander Kachura
时间
2026年01月19日 20:00 至 21:00
地点
Online
线上
Zoom 468 248 1222 (BIMSA)
摘要
The seminar is scheduled online for Monday from 20:00 to 21:00(Beijing Time)/15:00 to 16:00(Moscow Time).

Alexander Kachura, joint work with Vsevolod Chernyshev

​One of the approaches to analyze multivariate time series with interdependent components is to construct a complete weighted graph with nodes corresponding to the components of the time series and edge weights representing the strength of dependence between the pair of components corresponding to their ends. Neuroscience is among the many fields where this methodology is popular. A prominent example is the analysis of functional connectomes [1], brain networks whose nodes represent brain regions. These networks exhibit nontrivial structure, so their topological characteristics are useful for analysis. The level of interconnection between brain regions is usually measured using non-directional correlations, while the functional connections between brain regions are inherently directional. Topological characteristics of graphs can be analyzed with persistent homology [2], an increasingly popular dataanalysis tool that can also be applied to graphs. The essence of this approach is to track the moments of the appearance and disappearance of topological structures as the scale varies, using algebraic invariants called homology. When applied to weighted graphs – including functional connectomes – persistent homology allows us to study how the topological structure of a graph changes as the edgefiltering threshold varies. This enables identification of noise-robust topological features, which is crucial when the graph structure is not given a priori but estimated from data. Several homology theories exist. Simplicial homology – historically the first one used to compute persistent homology – cannot account for the directions of graph edges. The most direct generalization of this homology theory to digraphs is the homology of directed flag complexes [3]. However, it still discards some directional information. One of the homology theories that makes it possible to preserve a large proportion of information about the directions of edges is blurred magnitude homology [4].

​In this work we introduce a method for classifying directed functional connectomes using blurred magnitude homology, specifically its Betti curves, a popular numerical descriptor of persistent homology. As an example, we apply the developed technique to study graphs constructed from fMRI scans of individuals with ASD and typically developing controls.

​We experimentally tested the approach on the ABIDE dataset.

​This work was supported by the Russian Science Foundation, Grant No. 24-68-00030.





References

1. Uddin, L. Q., Yeo, B. T., & Spreng, R. N. (2019). Towards a universal taxonomy of macro-scale functional human brain networks. Brain topography, 32(6), 926-942.

2. Edelsbrunner, H., Harer, J. (2010). Computational topology: an introduction. American Mathematical Society.

3. Lütgehetmann, D., Govc, D., Smith, J. P., Levi, R. (2020). Computing persistent homology of directed flag complexes. Algorithms, 13(1), 19.

4. Otter, N. (2018). Magnitude meets persistence. Homology theories for filtered simplicial sets. arXiv preprint arXiv:1807.01540.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060