北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA-HSE Joint Seminar on Data Analytics and Topology Homological obstructions to the existence of matrix diagonalization algorithms
Homological obstructions to the existence of matrix diagonalization algorithms
组织者
瓦西里·戈尔布诺夫 , Taras Panov , 尼古拉·莱舍提金 , 吴杰 , 邬荣领 , 杨卓科
演讲者
Anton Ayzenberg
时间
2025年10月27日 20:00 至 21:00
地点
A6-101
线上
Zoom 468 248 1222 (BIMSA)
摘要
In applied linear algebra many problems reduce to finding eigenvalues of a real symmetric matrix A of size n. This can be done quite efficiently with asymptotical algorithms, such as QR-algorithm. Essentially, the algorithm produces a sequence A0, A1, A2, ... of isospectral matrices such that A0=A, and lim Ai is diagonal. In practice, the initial matrix A is usually sparse, meaning that the number of non-zero entries is much less than n^2. In computations with really large matrices, RAM happens to be a bottleneck, so the meaningful theoretical question: is there a diagonalization algorithm all of whose intermediate steps Ai belong to the same sparsity class as A?

The answer depends on the sparsity class. For Hessenberg matrices, i.e. matrices of staircase shape, QR-algorithm does the job. Our main result: non-Hessenberg sparsity classes (matrices that cannot be reduced to staircase shape by permutation of rows and columns) do not admit a diagonalization algorithm.

To prove this, we investigated topology of the manifold M(Γ, λ) of all sparse matrices with the specified spectrum λ, for each sparsity class Γ. Some particular cases are well-known: real full flag manifold (for full matrices), Tomei manifold (for tridiagonal matrices), twins of real Hessenberg varieties (for Hessenberg matrices). We made a systematic study of all sparsity classes and proved the alternative:
(1) If Γ is of Hessenberg class then the total Betti number β(M(Γ,λ)) equals n!.
(2) For any non-Hessenberg Γ we have β(M(Γ,λ)) > n!. In this case Morse theory implies our main result.
This alternative is proved by combination of classical results in structural graph theory, our recent results in toric topology, and a number of computational experiments with cohomology of sheaves over finite posets.

In my talk, I will explain the theories and theorems behind the proof, omitting the mathematically loaded details. The talk is based on my works with V. Buchstaber, V. Cherepanov, M. Masuda, G. Solomadin, and K. Sorokin.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060