北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Deep Learning at the Frontiers of Science Lattice Models for Coarse-Grained Representation of Dynamic Biological Systems
Lattice Models for Coarse-Grained Representation of Dynamic Biological Systems
组织者
焦小沛 , 马志婷 , 熊繁升
演讲者
叶雨松
时间
2025年09月18日 10:30 至 11:30
地点
A3-1-101
线上
Zoom 293 812 9202 (BIMSA)
摘要
Agent-based models have gained significant attention in systems biology due to their ability to accurately capture key features of biological systems while maintaining computational efficiency. These models offer a flexible framework that represents both macro- and micro-level physical properties but also reduced the computational complexity. This presentation focuses on lattice models—a wide-used agent-based approach: The most famous coarse-grained statical physic models - Ising model is a typical lattice model. We will discuss their characteristics, methodologies, and relevant research challenges.

A major advantage of lattice models is their ability to simulate different scales of biological activity with relative simplicity. They are particularly suitable for studying the growth processes in cell colonies. For example, we applied lattice model to simulate biofilm growth dynamics—a type of unstructured multicellular community—to examine its growth patterns with experimental results. Our simulations clearly show that the growth can depend on gel structure and nutrient distribution. Additionally, biofilm healing patterns and capacity are influenced by nutrient availability.
In summary, lattice models effectively replicate experimental observations and enable useful predictions. Their potential extends beyond microbial communities but also in cancer tumor research.
演讲者介绍
Dr. Yusong Ye earned his Ph.D. in Mathematics from Beihang University under Professor Yang Zhuoqin and completed postdoctoral research at Friedrich-Alexander University Erlangen–Nuremberg (FAU) under Professor Vasily Zaburdaev before becoming a Lecturer at Beijing University of Petrochemical Technology. His research uses mathematical modeling to study biological systems, integrating physical and biological data to understand processes like tumor growth and, more recently, the dynamics of toxic proteins in neurodegenerative diseases.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060