焦小沛
助理研究员
团队: 统计、概率和数据科学
办公室: A1-206
邮箱: jiaoxiaopei@bimsa.cn
研究方向: 非线性滤波,偏微分方程数值算法,物理信息机器学习
个人简介
焦小沛,本科毕业于上海交通大学致远学院,博士毕业于清华大学数学科学系。先后在北京雁栖湖应用数学研究院,荷兰特文特大学从事博士后工作。现研究方向包括有限维滤波理论,丘-丘滤波方法,物理信息神经网络以及生物信息学。研究兴趣主要集中于(1)利用李代数等几何工具进行偏微分方程求解与有限维滤波系统的分类;(2)设计基于物理信息神经网络的新型数值算法。
研究兴趣
- 有限维滤波
- 丘-丘滤波方法
- 物理信息神经网络
- 生物信息学
教育经历
- 2013 - 2017 上海交通大学 应用物理学 理学学士 (Supervisor: 蔡申瓯教授)
- 2017 - 2022 清华大学 应用数学 理学博士 (Supervisor: 丘成栋教授)
工作经历
- 2024 - 2024 荷兰特文特大学 博士后
- 2022 - 2024 北京雁栖湖应用数学研究院 博士后
荣誉与奖项
- 2014 全国大学生物理竞赛一等奖
- 2014 全国大学生数学竞赛一等奖
- 2015 美国大学生数学建模竞赛一等奖
- 2021 清华大学一等奖学金
出版物
- [1] Jiao, X.*, Ji Shi* & Yau, S. S. T., Explicit series solution of linear time-varying Schrodinger equation and its application in nonlinear filter, submitted to IEEE TRANSACTIONS ON AUTOMATIC CONTROL (2024)
- [2] Kang, J., Jiao, X., & Yau, S. S. T., Estimation of the Linear System via Optimal Transportation and Its Application for Missing Data Observations., submitted to IEEE TRANSACTIONS ON AUTOMATIC CONTROL (2024)
- [3] Shi, J.*, Jiao, X.*, & Yau, S. S.-T., A Novel Logarithmic Transformed Deep Galerkin Approach to Optimal Filtering Problem, accepted by Proceeding of 2024 IEEE 63rd Conference on Decision and Control (CDC) (2024)
- [4] Shi, J.*, Jiao, X.* and Stephen S.-T. Yau, DGLG: A deep Generalized Legendre-Galerkin approach to optimal filtering problem., IEEE TRANSACTIONS ON AUTOMATIC CONTROL (2024)
- [5] Jiao, X., & Xiong, F., GsPINN: A novel fast Green kernel solver based on symmetric Physics-Informed neural networks., submitted to NEUROCOMPUTING (2024)
- [6] Jiao, X., & Yau, S. S. T., Weak form Mitter conjecture on nonmaximal rank estimation algebra: state dimension 4 and rank 3., accepted by Journal of Systems Science & Complexity (2024)
- [7] Lai, X.*, Jiao, X.*, Zhang, H., & Lei, J., Computational modeling reveals key factors driving treatment-free remission in chronic myeloid leukemia patients, npj Systems Biology and Applications (2024)
- [8] Yu, H., Jiao, X., & Yau, S. S. T., Complete Classification of Finite Dimensional Estimation Algebras with State Dimension N, Linear Rank n-1 and Constant Wong Matrix., IEEE TRANSACTIONS ON AUTOMATIC CONTROL (2023)
- [9] Jiao, X. and Stephen S.-T. Yau, Finite-dimensional estimation algebra on arbitrary state dimension with nonmaximal rank: linear structure of Wong matrix., INTERNATIONAL JOURNAL OF CONTROL (2023)
- [10] Kang, J., Jiao, X., & Yau, S. S. T., Finite Dimensional Estimation Algebra for Time-Varying Filtering System and Optimal Transport Particle filter: A Tangent Flow Point of View., IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS (2023)
- [11] Zhang, C.*, Shao, C.*, Jiao, X.*, Bai, Y., Li, M., Shi, H., Lei, J., Zhong, X., Individual cell‐based modeling of tumor cell plasticity‐induced immune escape after CAR‐T therapy, Computational and Systems Oncology (2021)
- [12] Jiao, X., Pei, S., Sun, Z., Kang, J., & Yau, S. S. T., Determination of the nucleotide or amino acid composition of genome or protein sequences by using natural vector method and convex hull principle., FUNDAMENTAL RESEARCH (2021)
- [13] Jiao, Xiaopei, and Stephen S-T. Yau, Structure of finite dimensional exact estimation algebra on state dimension 3 and linear rank 2., INTERNATIONAL JOURNAL OF CONTROL (2021)
- [14] Jiao, X., & Yau, S. S. T., New classes of finite dimensional filters with nonmaximal rank estimation algebra on state dimension n and linear rank n-2, SIAM JOURNAL ON CONTROL AND OPTIMIZATION (2020)
- [15] Jiao, X., & Lei, J., Dynamics of gene expression based on epigenetic modifications., Communications in Information and Systems (2018)
更新时间: 2025-03-28 01:57:08