北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA Computational Math Seminar Efficient, Accurate and Stable Gradients for Neural Differential Equations
Efficient, Accurate and Stable Gradients for Neural Differential Equations
组织者
胡丕丕 , 梁鑫 , 马志婷 , 哈米德·莫菲迪 , Axel G.R. Turnquist , 王丽 , 熊繁升 , 杨朔 , 杨武岳
演讲者
James Foster
时间
2025年10月09日 15:15 至 16:15
地点
Online
线上
Zoom 928 682 9093 (BIMSA)
摘要
Neural differential equations (NDEs) sit at the intersection of two dominant modelling paradigms – neural networks and differential equations. One of their features is that they can be trained with a small memory footprint through adjoint equations. This can be helpful in high-dimensional applications since the memory usage of standard backpropagation scales linearly with depth (or, in the NDE case, the number of steps taken by the solver).

However, adjoint equations have seen little use in practice as the resulting gradients are often inaccurate. Fortunately, there has emerged a class of numerical methods which allow NDEs to be trained using gradients that are both accurate and memory efficient. These solvers are known as "algebraically reversible" and produce numerical solutions which can be reconstructed backwards in time.

Whilst algebraically reversible solvers have seen some success in large-scale applications, they are known to have stability issues. In this talk, we propose a methodology for constructing reversible NDE solvers from non-reversible ones. We show that the resulting reversible solvers converge in the ODE setting, can achieve high order convergence, and even have stability regions. We then present a few examples demonstrating the memory efficiency of our approach.

If time allows, we will also discuss some related and ongoing work into Deep Equilibrium Models (DEQs). Here, we leverage similar ideas to construct an algebraically reversible solver for fixed point systems. Just as in the NDE case, using a reversible solver allows us to train DEQs with accurate and memory-efficient gradients.

Joint work with Sam McCallum and Kamran Arora.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060