北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA Colloquium Solitons and channels of energy for nonlinear waves
Solitons and channels of energy for nonlinear waves
组织者
舟木 直久 , 吴劲松
演讲者
Carlos Kenig
时间
2025年09月10日 17:00 至 18:30
地点
A6-101
线上
Zoom 388 528 9728 (BIMSA)
摘要
We will recall the origins of Fourier analysis and its connection to partial differential equations through the work of Fourier on heat conduction in the early 19’th century. This led to the representation of solutions of evolutionary equations by the Fourier method, as a superposition of plane waves, a remarkable “simplification” that transformed the study of linear partial differential equations and led to fundamental technical advances in the 19th century. With the advent of computers in the middle of the 20’th century, through the remarkable computations of Fermi-­‐Pasta-­‐Ulam (mid50s) and Kruskal-­‐Zabusky (mid 60s) it was observed numerically that nonlinear equations modeling wave propagation, asymptotically, also exhibit a “simplification”, this time as superposition of “traveling waves” and “radiation”. This has become known as the “soliton resolution conjecture”. The only proofs available have been for “integrable” equations, which can be reduced to a collection of linear equations. The proof of such results, in the non-­‐integrable case, has been one of the grand challenges in the study of nonlinear differential equations. Recently, there have been important breakthroughs in obtaining mathematical proofs of these types of numerical observations, in the context of nonlinear wave equations, which I will discuss.
演讲者介绍
Carlos Eduardo Kenig is a Louis Block Distinguished Service Professor in the Department of Mathematics at the University of Chicago. He is known for his work in harmonic analysis and partial differential equations. He was an invited speaker at ICM2002 and a plenary speaker at ICM2010. He is a member of the American Academy of Arts and Sciences since 2002, and the National Academy of Sciences since 2014. He was president of the International Mathematical Union between 2019 and 2022.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060