北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Engineering Mathematics Seminar: Fundamentals and Frontiers in Control, Filtering, State Estimation, and Signal Processing Quantile tensor factor regression with interaction effects and its application to multimodal data analysis
Quantile tensor factor regression with interaction effects and its application to multimodal data analysis
组织者
焦小沛 , 康家熠
演讲者
皮鹏飞
时间
2025年05月08日 14:30 至 16:00
地点
A3-2-303
线上
Zoom 435 529 7909 (BIMSA)
摘要
Multimodal data analysis plays a pivotal role in advancing our comprehension of the brain, contributing significantly to fields such as neuroscience, psychology, psychiatry, and neurology. Multimodal data are consistently modeled as tensor covariates. For numerous clinical and psychological outcomes, quantile regression is highly valued due to its stability and flexibility. This article explores quantile regression involving tensor covariates and applies it to multimodal data analysis. In this proposed approach, tensor covariates are assumed to adhere to a factor structure, from which new feature variables are derived. Subsequently, the main effects of these new feature variables and their interactions are considered in the quantile regression. The article introduces a rapid and efficient method for predicting the dependent variable in quantile regression with interaction effects. The main theoretical results of our approach have been established. The accuracy and stability of the proposed algorithm are validated through extensive simulation experiments. Finally, the proposed method is applied to analyze SKCM and ADHD data, demonstrating superior predictive accuracy and faster computational speed compared to existing methods.
演讲者介绍
Pengfei Pi received the B.S. degree in Mathematics from Sichuan University, Chengdu, China, in 2020. He is currently a Ph.D. candidate in the School of Mathematical Sciences, Shanghai Jiao Tong University. His current research interests include time-varying networks, tensor data analysis, and multi-modal integration.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060