When and why PINNs fail to train from the viewpoint of neural tangent kernel
组织者
演讲者
时间
2023年11月17日 22:00 至 22:30
地点
Online
摘要
In this talk, we will share several literatures about the explanation of training dynamics of Physics-informed neural network. Especially, as a uniform framework, neural tangent kernel demonstrates the dynamical behavior when width of NN goes to infinity in the single layer setting. NTK illustrates training one-layer NN with infinite width is the same as a kernel regression. As a consequence, NTK will exhibit the training weights of different parts in loss function which will provide the guidance for adaptive algorithm of revised PINN.
演讲者介绍
焦小沛,于2017年本科毕业于上海交通大学致远学院(物理班),2022年博士毕业于清华大学数学科学系,师从丘成栋教授(IEEE fellow,前美国伊利诺伊大学芝加哥分校终身教授)。先后在北京雁栖湖应用数学研究院,荷兰特文特大学从事博士后工作(导师Johannes Schmidt-Hieber教授,国际数理统计学会会士)。现研究方向包括控制理论,数值偏微分方程,生物信息学。获得2025年国家青年科学基金[C类]资助。