北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA-HSE Joint Seminar on Data Analytics and Topology Inverse problems related to electrical networks and the geometry of non-negative Grassmannians
Inverse problems related to electrical networks and the geometry of non-negative Grassmannians
组织者
瓦西里·戈尔布诺夫 , Taras Panov , 尼古拉·莱舍提金 , 吴杰 , 邬荣领 , 杨卓科
演讲者
Anton Kazakov
时间
2025年01月20日 20:00 至 21:00
地点
A6-101
线上
Zoom 468 248 1222 (BIMSA)
摘要
An electrical network is just a graph equipped with positive edge weights denoting conductivities, which nodes are divided on two sets: a set of inner nodes and a set of boundary nodes. Applying voltages $\mathbf{U}\colon V_B \to\mathbb{R}$ to its boundary nodes, we obtain the unique harmonic extension on all vertices voltages $U\colon V \to \mathbb{R}$, which might be found out by the Ohm's and Kirchhoff's laws. Studying different properties of these harmonic extensions has given rise to many combinatorial objects: electrical response matrices, effective resistances and partition functions of spanning groves. All of them have appeared in many theories from the statistical physics (see, for instance, $q \to 0$ Potts models [6] and its relation to Abelian sandpile models [4]) to some areas of chemistry [8].
In the focus of my talk will be the theory of the planar circular electrical networks, which closely relates to the geometry of non-negative Grassmannians [2], [3], [9]. We will present the explicit construction [2], [3] of the embedding of electrical networks to the non-negative part of Grassmannian $\mathrm{Gr}(n − 1, 2n)$ by their effective resistance matrices. Using it, we will provide the sketch of the cluster solution of the network topology reconstruction problem [7], which has the application in phylogenetic network theory [5].
The author was supported by the Russian Science Foundation grant 20-71-10110 (P).
REFERENCES
1. Borcea L., Druskin V., Vasquez F. G., “Electrical impedance tomography with resistor networks. Inverse Problems”, Vol.24, No.3, (2008).
2. Bychkov B., Gorbounov V., Guterman L., Kazakov A., “Symplectic geometry of electrical networks”, Journal of Geometry and Physics, Vol.207, (2025).
3. Bychkov B., Gorbounov V., Kazakov A., Talalaev D., “Electrical Networks, Lagrangian Grassmannians, and Symplectic Groups,” Moscow Mathematical Journal, Vol.23, No.2, (2023).
4. Dhar D., “The abelian sandpile and related models”, Physica A: Statistical Mechanics and its applications, Vol.263, No. 1-4., (1999).
5. Forcey S., “Circular planar electrical networks, split systems, and phylogenetic networks”, SIAM Journal on Applied Algebra and Geometry, Vol.7, No. 1, (2023).
6. Fortuin C. M., Kasteleyn P. W., “On the random-cluster model: I. Introduction and relation to other models”, Physica, Vol. 57, No. 4., (1979).
7. Gorbounov V., Kazakov A. “Electrical networks and data analysis in phylogenetics”, arXiv preprint arXiv:2501.01383, (2025).
8. Klein D. J., Randi´c M., “Resistance distance”, J. Math. Chem., Vol. 12, (1993).
9. Lam T., “Totally nonnegative Grassmannian and Grassmann polytopes,” arXiv preprint arXiv:1506.00603, (2015).
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060