北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA AG Seminar On the Quantum K-theory of Quiver Varieties at Roots of Unity
On the Quantum K-theory of Quiver Varieties at Roots of Unity
组织者
阿尔坦·谢什马尼 , 杨南君 , 袁北彗
演讲者
彼得·科罗捷耶夫
时间
2024年12月05日 15:00 至 16:00
地点
A6-101
线上
Zoom 638 227 8222 (BIMSA)
摘要
In the framework of equivariant quantum K-theory of Nakajima quiver varieties we construct a q-analog of a Frobenius intertwiner between $\mathbb{Z}/p\mathbb{Z}$-equivariant quantum K-theory and the standard conventional quantum K-theory. We prove that this operator has no poles at primitive complex $p$-th roots of unity in the curve counting parameter $q$. As a byproduct, we show that the eigenvalues of the iterated product of quantum difference operators by quantum bundles $\mathcal{L}$ of quiver variety $X$
evaluated at roots of unity are governed by Bethe equations for $X$ with all variables substituted by their $p$-th powers. In the cohomological limit, the above iterated product is conjectured to reduce to the p-curvature of the quantum connection for prime $p$.
演讲者介绍
My education begain in Russia where I learned math and physics at Moscow Insitute of Physics and Technology. I started my research career as a theoretical physicist after obtaining my PhD from University of Minnesota in 2012. At first, my research focus was drawn to various aspects of supersymmetric gauge theories and string theory. However, I have always been drawn to pure abstract mathematics since my student days. Since around 2017 I have been a full time mathematician.

My current research is focused on the interaction between enumerative algebraic geometry, geometric representation theory and integrable systems. In general I work on physical mathematics which nowadays represents a large part of modern math. A significant amount of problems that are studied by mathematicians comes from string/gauge theory. More recently I began to study number theory and how it is connected to other branches of mathematics.

If you are postdoc or a graduate student in Beijing area and you are interested in working with me contact me via email.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060