北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA Digital Economy Lab Seminar Impact of real-time weather conditions on crash injury severity in Kentucky using the correlated random parameters logit model with heterogeneity in means
Impact of real-time weather conditions on crash injury severity in Kentucky using the correlated random parameters logit model with heterogeneity in means
组织者
韩立岩 , 李振 , 龙飞 , 汤珂 , 王玉
演讲者
王美懿
时间
2025年01月20日 15:20 至 16:20
地点
A3-2-303
线上
Zoom 230 432 7880 (BIMSA)
摘要
This study examines the influence of real-time weather conditions—such as air temperature, relative humidity, precipitation, wind speed, and solar radiation—on the severity of crash injuries. The research merges crash data from January 2016 to April 2021 on Interstate-75 in Kentucky with weather information from the Kentucky Mesonet stations at a one-hour granularity.To assess the effect of various weather conditions on crash severity, the study introduces a novel severity index (SI), which compares the ratio of severe crashes to the exposure of specific weather conditions during the crash period. The study also applies several advanced statistical models, including the standard mixed logit (MXL), correlated mixed logit (CMXL), and correlated mixed logit with heterogeneity in means (CMXLHM), to account for unobserved heterogeneity and identify the risk factors contributing to crash injury severity.The findings reveal that the CMXLHM model outperforms the other models in terms of statistical fit, as indicated by metrics such as the Akaike information criterion (AIC) and McFadden’s pseudo R-squared. Key results from both the SI analysis and the CMXLHM model show that weather factors such as air temperature (≥ 70°F) and high relative humidity (≥ 90%) are significantly associated with higher likelihoods of severe injuries in crashes. Additionally, factors like driving under the influence (DUI), young drivers, and vehicle speed are linked to greater injury severity, while factors such as the presence of horizontal curves, passenger cars, and traffic volume contribute to lower injury severity likelihood.
演讲者介绍
Meiyi Wang is a PhD student at BIMSA and UCAS.Her research interests focus on digital economy, international finance, and AI-driven driving technologies.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060