Riemannian Geometry
Riemannian Geometry, proposed by Riemann in his Habilitation Lecture 1953, is the study of geometric properties of manifolds M, a (curved) n-dimensional space, together with a way of measuring length on M– the Riemannian metric.
In this rather introductory course to differential geometry, I will cover the following:
Definition and first examples of Riemannian manifolds
Connections, Geodesics
Hopf-Rinow Theorem
Riemann curvature tensor
Jacobi Fields
Bonnet-Meyers Theorem
Synge Theorem
Comparison theorems for triangles (Topogonov)
Classification of space forms
Classification of Surfaces
In this rather introductory course to differential geometry, I will cover the following:
Definition and first examples of Riemannian manifolds
Connections, Geodesics
Hopf-Rinow Theorem
Riemann curvature tensor
Jacobi Fields
Bonnet-Meyers Theorem
Synge Theorem
Comparison theorems for triangles (Topogonov)
Classification of space forms
Classification of Surfaces
讲师
日期
2023年09月21日 至 12月19日
位置
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
周一,周二 | 12:30 - 14:15 | A3-4-312 | ZOOM A | 388 528 9728 | BIMSA |
视频公开
公开
笔记公开
公开
讲师介绍
Lynn Heller于2003-2008年在柏林工业大学学习经济学和在柏林工业大学学习数学,并于2012年在图宾根埃伯哈德卡尔斯大学获得博士学位。此后,她留在图宾根做博士后,直到2017年在汉诺威莱布尼茨大学获得初级教授职位。其在微分几何上有近 10 年的研究科研经历,特别是三维情况下的 constantmean-curvature (CMC)曲面和 constrained Willmore 曲面的微分几何问题,涵盖几何分析,可积系统,李代数,代数几何等多个领域。在国际重要期刊上发表论文 20 余篇,引用 100 余次,H 指数 6。在国际会议上受邀参与报告 20 余次。