Geometry and Analysis in Black Hole Spacetimes
Black holes play a central role in general relativity and astrophysics. The Kerr solution of the Einstein equations describes a spacetime containing an isolated, rotating black hole. Following a brief introduction to the Cauchy problem for the Einstein equations, I will discuss the main features of the geometry of the Kerr spacetime, including its algebraically special nature and consequences thereof, and some aspects of the Black Hole Stability Problem. Together with closely related Black Hole Uniqueness Problem and the Penrose Inequality, it is one of three major open mathematical problems of general relativity related to the Kerr solution.
讲师
日期
2022年12月06日 至 20日
网站
修课要求
Differential Geometry, Riemannian Geometry
课程大纲
Cauchy problem, Kerr solution, 2-spinor formalism, Teukolsky Equation
听众
Undergraduate
, Graduate
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Lars Andersson现任北京雁栖湖应用数学研究院研究员,曾在斯德哥尔摩皇家理工学院、迈阿密大学担任教授,曾任马克斯普朗克研究所几何与引力首席科学家,并在阿尔伯特·爱因斯坦研究所领导一个研究小组。他是微分几何与数学物理领域知名专家,荣获克劳福德建设奖、多布卢格奖。他主要研究广义相对论、数学物理和微分几何的相关问题,并为宇宙学模型、表观视界和自引力弹性体的数学分析做出了贡献。Lars-Andersson最近的研究兴趣包括黑洞稳定性问题、引力瞬子和引力自旋霍尔效应。