Eigenvarieties, families of Galois representations, p-adic L-functions
This course is intended to give a gentle introduction to p-adic families of modular forms and p-adic L-functions. We roughly cover the contents of "The Eigenbook" by Bellaiche. We will start by introducing a general construction of eigenvariety, and discuss modular symbols and their connection to modular forms. Then we will use the tools to construct the eigencurve and study families of Galois representations and p-adic L-functions it carries.
讲师
日期
2023年02月24日 至 06月19日
位置
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
周三,周五 | 13:30 - 15:05 | A3-3-201 | ZOOM 03 | 242 742 6089 | BIMSA |
修课要求
Graduate-level commutative algebra, algebraic geometry, algebraic number theory; Basic background in modular forms and rigid analytic geometry
课程大纲
To be announced
参考资料
1. "The Eigenbook" by Joel Bellaiche
2. https://sites.google.com/view/yong-suk-moons-webpage/teaching?authuser=0
2. https://sites.google.com/view/yong-suk-moons-webpage/teaching?authuser=0
听众
Undergraduate
, Graduate
视频公开
不公开
笔记公开
不公开
语言
英文
讲师介绍
Yong Suk Moon于2022年秋作为助理研究员入职BIMSA。他的研究方向包括数论和算术几何。具体而言,他现在的研究集中在p-进霍奇理论,Fontaine-Mazur猜想和p-进Langlands纲领。他于2016年在哈佛大学取得博士学位,之后在普度大学作为访问助理教授工作3年,2019-2022年在美国亚利桑那大学做博士后。