Integrable PDEs and Deligne-Hitchin moduli spaces
Solutions to integrable PDEs on Riemann surfaces like the sinh-Gordon equation or Hitchin's self-duality equations [5] can be described in terms of families of flat connections.
On the one hand, this easily shows that locally, e.g. on the disc, there are (too) many solutions. On the other hand, one can deduce many interesting and deep results for solutions over compact surfaces:
・ for surfaces of genus 0 all solutions can be expressed by holomorphic functions (1980-1990, e.g. Uhlenbeck [11]);
・ for tori, i.e. oriented surfaces of genus 1, one obtains all solutions by means of their algebraic-geometric spectral data (1990-early 2000s, e.g. Hitchin [6]), or again directly by holomorphic functions.
In this course I will explain how to describe solutions of integrable PDEs on compact surfaces of higher genus by means of complex curves into Deligne-Hitchin moduli spaces [2]. In doing so, we will first construct the Deligne-Hitchin moduli space [9,10], and then identify it with the twistor space [7] of solutions of Hitchin's self-duality equations [9]. As a byproduct, we will naturally derive the non-abelian Hodge correspondence [5], see also [4]. After that, we will discuss other equations and their solutions like minimal surfaces in spheres or constant mean curvature surfaces [3]. If time permits, we will discuss certain additional structures on the Deligne-Hitchin moduli space related to hyper-Kähler geometry and to the harmonic map energy [1].
On the one hand, this easily shows that locally, e.g. on the disc, there are (too) many solutions. On the other hand, one can deduce many interesting and deep results for solutions over compact surfaces:
・ for surfaces of genus 0 all solutions can be expressed by holomorphic functions (1980-1990, e.g. Uhlenbeck [11]);
・ for tori, i.e. oriented surfaces of genus 1, one obtains all solutions by means of their algebraic-geometric spectral data (1990-early 2000s, e.g. Hitchin [6]), or again directly by holomorphic functions.
In this course I will explain how to describe solutions of integrable PDEs on compact surfaces of higher genus by means of complex curves into Deligne-Hitchin moduli spaces [2]. In doing so, we will first construct the Deligne-Hitchin moduli space [9,10], and then identify it with the twistor space [7] of solutions of Hitchin's self-duality equations [9]. As a byproduct, we will naturally derive the non-abelian Hodge correspondence [5], see also [4]. After that, we will discuss other equations and their solutions like minimal surfaces in spheres or constant mean curvature surfaces [3]. If time permits, we will discuss certain additional structures on the Deligne-Hitchin moduli space related to hyper-Kähler geometry and to the harmonic map energy [1].
讲师
日期
2023年09月18日 至 12月12日
位置
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
周一 | 12:30 - 14:15 | A3-4-301 | ZOOM 01 | 928 682 9093 | BIMSA |
周二 | 09:50 - 11:25 | A3-4-301 | ZOOM 01 | 928 682 9093 | BIMSA |
修课要求
It is necessary to have some basic knowledge about differential geometry and Riemann surfaces.
课程大纲
・ flat connections and moduli spaces thereof
・ integrable PDEs on Riemann surfaces
・ construction of the Deligne-Hitchin moduli space
・ twistor spaces for hyper-Kähler manifolds
・ loop group factorisations
・ the non-abelian Hodge correspondence
・ harmonic maps via sections of Deligne Hitchin moduli spaces
・ the hyper-holomorphic line bundle
・ integrable PDEs on Riemann surfaces
・ construction of the Deligne-Hitchin moduli space
・ twistor spaces for hyper-Kähler manifolds
・ loop group factorisations
・ the non-abelian Hodge correspondence
・ harmonic maps via sections of Deligne Hitchin moduli spaces
・ the hyper-holomorphic line bundle
参考资料
[1] F. Beck, S. Heller, M. Röser, Energy of sections of Deligne-Hitchin moduli spaces, Math. Annalen 380 (2021), no. 3-4, 1169--1214.
[2] I. Biswas, S. Heller, M. Röser, Real sections of the Deligne-Hitchin moduli space, Comm. Math. Phys., Volume 366, Issue 3 (2019), pages 1099--1133.
[3] L. Heller, S. Heller, M. Traizet, Complete families of embedded high genus CMC surfaces in the 3-sphere (with an appendix by Steven Charlton), https://arxiv.org/abs/2108.10214.pdf.
[4] L. Heller, S. Heller, M. Traizet, Loop group methods for the non-abelian Hodge correspondence on a 4-punctured sphere, https://arxiv.org/abs/2205.12106.pdf.
[5] N. Hitchin, The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3) 55 (1987), no. 1, 59-126.
[6] N. Hitchin, Harmonic maps from a 2-torus to the 3-sphere. J. Differential Geom. 31 (1990), no. 3, 627--710.
[7] N. Hitchin, A. Karlhede, U. Lindström, and M. Rocek, Hyperkähler Metrics and Supersymmetry, Commun. Math. Phys. 108 (1987), 535--589.
[8] L. Heller, S. Heller, M. Traizet, Complete families of embedded high genus CMC surfaces in the 3-sphere, Preprint: arXiv:2108.10214
[9] C. Simpson, The Hodge filtration on nonabelian cohomology. Algebraic geometry--Santa Cruz 1995, 217--281, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997
[10] C. Simpson, The twistor geometry of parabolic structures in rank two, https://arxiv.org/pdf/2110.12300.pdf
[11] K. Uhlenbeck, Harmonic maps into Lie groups (classical solutions of the chiral model), J. Diff. Geom. 19 (1984) 431--452.
[2] I. Biswas, S. Heller, M. Röser, Real sections of the Deligne-Hitchin moduli space, Comm. Math. Phys., Volume 366, Issue 3 (2019), pages 1099--1133.
[3] L. Heller, S. Heller, M. Traizet, Complete families of embedded high genus CMC surfaces in the 3-sphere (with an appendix by Steven Charlton), https://arxiv.org/abs/2108.10214.pdf.
[4] L. Heller, S. Heller, M. Traizet, Loop group methods for the non-abelian Hodge correspondence on a 4-punctured sphere, https://arxiv.org/abs/2205.12106.pdf.
[5] N. Hitchin, The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3) 55 (1987), no. 1, 59-126.
[6] N. Hitchin, Harmonic maps from a 2-torus to the 3-sphere. J. Differential Geom. 31 (1990), no. 3, 627--710.
[7] N. Hitchin, A. Karlhede, U. Lindström, and M. Rocek, Hyperkähler Metrics and Supersymmetry, Commun. Math. Phys. 108 (1987), 535--589.
[8] L. Heller, S. Heller, M. Traizet, Complete families of embedded high genus CMC surfaces in the 3-sphere, Preprint: arXiv:2108.10214
[9] C. Simpson, The Hodge filtration on nonabelian cohomology. Algebraic geometry--Santa Cruz 1995, 217--281, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997
[10] C. Simpson, The twistor geometry of parabolic structures in rank two, https://arxiv.org/pdf/2110.12300.pdf
[11] K. Uhlenbeck, Harmonic maps into Lie groups (classical solutions of the chiral model), J. Diff. Geom. 19 (1984) 431--452.
视频公开
公开
笔记公开
公开
讲师介绍
Sebastian Heller于2008年获得德国洪堡大学的博士学位,后于2014年获得德国图宾根大学的特许任教资格,在2014-2022年期间在德国海德堡大学任研究员,自2022年9月起任北京雁栖湖应用数学研究院研究员。S. Heller教授致力于微分几何、代数和复杂几何领域研究,特别是紧黎曼曲面上的可积偏微分方程研究,该研究被广泛应用到最小曲面理论、调和映射领域和理论物理学中。在谐波映射、最小和CMC表面领域的科研能力处于国际前沿水平,证明了完整的紧凑型CMC曲面族的存在;展示了沿着变形所有表面都是嵌入的,并获得了关于依赖于保形类型的平均曲率和威尔莫尔能量的更多信息,这是关于3球体中紧凑嵌入CMC表面空间的第一个全局结果;发现了一种用于根据某些积分计算Lawson曲面的复分析数据的递归算法。这些研究成果使得在理解3球体中致密恒定平均曲率(CMC)表面的几何和(复)分析特性方面迈出了重要一步,得到领域专家学者普遍认可。已在《Comm. Math. Phys.》、 《Journal of Integrable Systems》、《Math. Ann.》、《Journal of Differential Geometry》、《Proceedings of the Royal Society A》, 《Journal of Differential Geometry》等国际重要期刊发表论文43篇,引用202余次,H因子8。在国际会议、论坛等做了21场次的主题和邀请口头报告,并组织6次会议。