北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Topological data analysis and its applications to machine learning \(ICBS\)
Topological data analysis and its applications to machine learning
This course introduces the core concepts of topological data analysis (TDA), a set of methods from algebraic topology designed to study the structure of data. We will focus on key techniques such as persistence barcodes, which enable the uncovering of topological features in data that traditional methods fail to detect.
Throughout the course, we will explore how TDA can be applied to machine learning tasks, such as evaluating generative adversarial networks, dimensionality reduction, disentanglement, and detection of artificially generated texts. A solid understanding of the mathematical foundations behind these techniques will be developed, alongside practical experience in applying them to real-world problems.
The course will also touch on emerging research directions in TDA, including its integration with deep learning, the development of more efficient computational methods, and new applications in areas such as variational autoencoders and large language models.
Professor Lars Aake Andersson
讲师
Serguei Barannikov
日期
2024年11月11日 至 2025年01月15日
位置
Weekday Time Venue Online ID Password
周一,周三 09:50 - 11:25 A3-1a-205 ZOOM 02 518 868 7656 BIMSA
参考资料
[1] S. Barannikov, "The Framed Morse Complex and Its Invariants.", Advances in Soviet Mathematics, Volume 21, 1994, Pages 93–115, DOI: 10.1090/advsov/021/03
[2] S. Barannikov, "Canonical Forms = Persistence Diagrams", Tutorial. 37th European Workshop on Computational Geometry (EuroCG 2021)
[3] Le Peutrec, D., Nier, F. & Viterbo, C. “The Witten Laplacian and Morse–Barannikov Complex.” Ann. Henri Poincaré 14, 567–610 (2013).
[4] S. Barannikov, I. Trofimov, G. Sotnikov, E. Trimbach, A. Korotin, A. Filippov, E. Burnaev, "Manifold Topology Divergence: A Framework for Comparing Data Manifolds" Advances in Neural Information Processing Systems (NeurIPS 2021)
[5] S. Barannikov, I. Trofimov, N. Balabin, E. Burnaev, "Representation Topology Divergence: A Method for Comparing Neural Network Representations", 39th International Conference on Machine Learning (ICML 2022)
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Prof. Serguei Barannikov earned his Ph.D. from UC Berkeley and has made contributions to algebraic topology, algebraic geometry, mathematical physics, and machine learning. His work, prior to his Ph.D., introduced canonical forms of filtered complexes, now known as persistence barcodes, which have become fundamental in topological data analysis. More recently, he has applied topological methods to machine learning, particularly in the study of large language models, with results published in leading ML conferences such as NeurIPS, ICML, and ICLR, effectively bridging pure mathematics and advanced AI research.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060