北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Stochastic methods for Statistical Learning
Stochastic methods for Statistical Learning
Statistical learning is the core application of statistics in the fields of artificial intelligence, machine learning, and data analysis. This course will focus on the stochastic methods of statistical learning, taking Markov chains and stochastic differential equations as the theoretical foundation to delve into important contents such as contrastive divergence algorithm, score matching algorithm, noise contrastive estimation, and diffusion models. The course will be supported by algorithm implementation practice, work exhibition and exchange, and interpretation of cutting-edge papers, aiming to help students fully grasp relevant knowledge and skills. Additionally, the course will also briefly introduce the use of relevant computer languages and software packages.
Professor Lars Aake Andersson
讲师
宋丛威
日期
2024年04月08日 至 07月08日
位置
Weekday Time Venue Online ID Password
周一,周三 15:35 - 17:10 A3-1-301 ZOOM 04 482 240 1589 BIMSA
修课要求
Real analysis, probability theory, statistics, stochastic processes, and stochastic differential equations
课程大纲
**I. Nature and Objectives of the Course**

Course Nature:

"Statistical Learning Random Methods" is a general machine learning course that focuses on summarizing and introducing random methods in statistical learning. It primarily covers contrastive divergence, score matching, noise-contrastive estimation, diffusion models, generative adversarial networks, and more.

Objectives:

Through this course, students will acquire a fundamental understanding of the ideas and methods centered on random simulations in statistical learning and their applications across various fields. They will learn to implement algorithms in statistical learning using familiar computer languages or apply statistical learning theories to areas of interest. It is hoped that students will be inspired to design better algorithms and models.

- Reviewing basic statistical learning foundations
- Primarily discussing statistical learning methods based on random simulations; introducing advanced statistical learning models; delving into principles and related papers
- Algorithm design. Most computer languages provide libraries for statistical learning. Probabilistic programming is also popular. Particularly recommended Python third-party libraries include scikit-learn, pymc3, statsmodels; rpy2 implements an R interface. Other programming languages such as Matlab, Julia, Go, Nim will also be introduced.

**II. Design of Course Teaching Methods**

The course will primarily adopt online teaching, combined with classroom discussions, literature explanations, and algorithm exercises.

Online teaching will mainly focus on explaining newer random simulation methods in statistical learning. Through analyzing classic papers, students will understand experts' research approaches and be able to design their own models/algorithms.

Classroom discussions will facilitate interaction between teachers and students, improve teaching efficiency, promptly address students' doubts, and broaden their perspectives.
参考资料
Christian P. Robert, George Casella. Monte Carlo Statistical Methods, New York: Springer-Verlag, 1999.
听众
Undergraduate , Advanced Undergraduate , Graduate , 博士后 , Researcher
视频公开
公开
笔记公开
公开
语言
中文 , 英文
讲师介绍
宋丛威于2011年在浙江大学理学院取得应用数学硕士学位,于2014年在浙江大学数学系取得基础数学博士学位,2014-2021年在浙江工业大学之江学院任讲师,2021至今任BIMSA助理研究员。主要研究方向:小波分析,调和分析,机器学习。
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060