北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Nonlinear filter and deep learning \(ICBS\)
Nonlinear filter and deep learning
As an important branch of control theory, nonlinear filtering refers to the estimation or filtering out of noise from a system where the underlying system dynamics are nonlinear. These problems arise in various fields, such as signal processing, robotics, and economics. The nonlinear property originating from the system makes it difficult to apply traditional linear filtering techniques such as the Kalman filter and its variants, particle filter, etc.

This course will focus on the mathematical foundation and algorithms to handle nonlinear filtering. In the 1983 International Congress of Mathematics, Brockett proposed the classification problem for finite-dimensional filters. We shall first introduce the so-called Brockett-Mitter program by applying geometric methods, e.g., Lie algebra. Later, we shall concentrate on the well-known Yau-Yau filter to introduce the theory and the corresponding developed numerical algorithms. Finally, combined with recent popular deep learning techniques, some novel filtering algorithms to deal with infinite-dimensional filters will be introduced.

After completing the course, participants will be familiar with important mathematical tools and their applications in nonlinear filtering. This course will also contain many cutting-edge academic results from the lecturer himself.
Professor Lars Aake Andersson
讲师
焦小沛
日期
2025年03月19日 至 07月02日
位置
Weekday Time Venue Online ID Password
周三 14:20 - 16:55 A3-1-101 ZOOM 2 638 227 8222 BIMSA
修课要求
Basic knowledge of Calculus, linear algebra and differential equation.
课程大纲
1. Introduction to nonlinear filter problem, mathematical formulation, and popular filtering algorithms

Brockett-Mitter program of classification
2. Basic knowledge of Lie group and Lie algebra
3. Finite dimensional filter(I)
4. Finite dimensional filter(II)
5. Finite dimensional filter(III)
6. Finite dimensional filter(IV)

Optimal nonlinear filter
7. Basic knowledge of Partial differential equation
8. Yau-Yau filter (I)
9. Yau-Yau filter (II)
10. Yau-Yau filter (III)
11. Yau-Yau filter (IV)

Deep learning filter
12. Basic introduction to scientific machine learning
13. Deep learning-inspired filter algorithms (I)
14. Deep learning-inspired filter algorithms (II)
15. Deep learning-inspired filter algorithms (III)
16. Deep learning-inspired filter algorithms (IV)
参考资料
Latest papers of the lecturer and the related literature.
听众
Undergraduate , Graduate , Researcher
视频公开
公开
笔记公开
公开
语言
中文 , 英文
讲师介绍
焦小沛,本科毕业于上海交通大学致远学院,博士毕业于清华大学数学科学系。先后在北京雁栖湖应用数学研究院,荷兰特文特大学从事博士后工作。现研究方向包括有限维滤波理论,丘-丘滤波方法,物理信息神经网络以及生物信息学。研究兴趣主要集中于(1)利用李代数等几何工具进行偏微分方程求解与有限维滤波系统的分类;(2)设计基于物理信息神经网络的新型数值算法。
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060