Methods of classical integrable systems
We consider integrable tops, the Toda chain, the Calogero-Moser model, and its spin generalization.
In the first part of the course, we will consider the theoretical group approach to integrable systems(such constructions as the Lax pair, the classical r-matrix, the momentum map)
In the second part, we will study algebro-geometric ways of solving integrable systems (spectral curve, compact Riemann surfaces, higher theta functions).
In the first part of the course, we will consider the theoretical group approach to integrable systems(such constructions as the Lax pair, the classical r-matrix, the momentum map)
In the second part, we will study algebro-geometric ways of solving integrable systems (spectral curve, compact Riemann surfaces, higher theta functions).
讲师
日期
2024年10月08日 至 12月08日
位置
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
周四 | 15:20 - 17:50 | A3-1a-205 | ZOOM 11 | 435 529 7909 | BIMSA |
周二 | 13:30 - 16:05 | A3-1-103 | ZOOM 11 | 435 529 7909 | BIMSA |
修课要求
Hamiltonian mechanics; Analysis on manifolds (vector fields, differential forms, etc.); Basics of group theory and Lie algebras (tangent algebra of a group, action of a group on a manifold, compact Lie groups); Basics of Riemann Surfaces.
参考资料
A. Babelon, D. Bernard, M. Talon. "Introduction to classical integrable systems"
B. I. Arnold "Mathematical methods of classical mechanics"
C. M. Perelomov. "Integrable Systems of Classical Mechanics and Lie Algebras"
D. Olshanetsky and A. Perelomov. "Classical integrable finite-dimensional systems related to Lie algebras"
B. A. Dubrovin, I. M. Krichever, S. P. Novikov "Integrable Systems"
B. I. Arnold "Mathematical methods of classical mechanics"
C. M. Perelomov. "Integrable Systems of Classical Mechanics and Lie Algebras"
D. Olshanetsky and A. Perelomov. "Classical integrable finite-dimensional systems related to Lie algebras"
B. A. Dubrovin, I. M. Krichever, S. P. Novikov "Integrable Systems"
听众
Advanced Undergraduate
, Graduate
, 博士后
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
Andrii Liashyk的研究领域是可积系统,主要研究量子系统。他于2020年获得了Skoltech高等研究中心的博士学位。2022年,他加入BIMSA担任助理教授。