安德烈·利亚希克
助理研究员
团队: 数学物理
办公室: A3-2-204
邮箱: liashyk@bimsa.cn
研究方向: 数学物理、量子和经典可积系统、精确可解量子场论、贝特拟设
个人简介
Andrii Liashyk的研究领域是可积系统,主要研究量子系统。他于2020年获得了Skoltech高等研究中心的博士学位。2022年,他加入BIMSA担任助理教授。
出版物
- [1] A. Liashyk, S. Pakuliak, E. Ragoucy, Rectangular recurrence relations in 𝔤𝔩_n and 𝔬_{2n+1} invariant integrable models (2024)
- [2] A. Liashyk, S. Pakuliak, On the R-matrix realization of the quantum loop algebra. The case of U_q(D^(2)_n), J. Math. Phys, 65(121703) (2024)
- [3] A. Liashyk, N. Reshetikhin, I. Sechin, Quantum Integrable Systems on a Classical Integrable Background , accepted by Comm. Math. Phys. (2024)
- [4] A. Liashyk, S. Z. Pakuliak, On the R-matrix realization of quantum loop algebras, SciPost Phys, 12(146) (2022)
- [5] A. Liashyk, S. Pakuliak, E. Ragoucy, Recurrence relations for off-shell Bethe vectors in trigonometric integrable models, J. Phys. A: Math. Theor., 55(075201) (2022)
- [6] A. Liashyk, S. Z. Pakuliak, Gauss Coordinates vs Currents for the Yangian Doubles of the Classical Types, SIGMA, 16(120), 23 (2021)
- [7] A. Liashyk, S. Z. Pakuliak, Algebraic Bethe ansatz for 𝔬_{2n+1}-invariant integrable models, Theoret. and Math. Phys(206), 19-39 (2021)
- [8] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, Actions of the monodromy matrix elements onto 𝔤𝔩(m|n)-invariant Bethe vectors, J. Stat. Mech, 2009(093104) (2020)
更新时间: 2025-03-28 01:57:07