北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > 安德烈·利亚希克

安德烈·利亚希克

     助理研究员    
助理研究员 安德烈·利亚希克

团队: 数学物理

办公室: A3-2-204

邮箱: liashyk@bimsa.cn

研究方向: 数学物理、量子和经典可积系统、精确可解量子场论、贝特拟设

CV

个人简介


Andrii Liashyk的研究领域是可积系统,主要研究量子系统。他于2020年获得了Skoltech高等研究中心的博士学位。2022年,他加入BIMSA担任助理教授。

出版物


  • [1] A. Liashyk, S. Pakuliak, E. Ragoucy, Rectangular recurrence relations in 𝔤𝔩_n and 𝔬_{2n+1} invariant integrable models (2024)
  • [2] A. Liashyk, S. Pakuliak, On the R-matrix realization of the quantum loop algebra. The case of U_q(D^(2)_n), J. Math. Phys, 65(121703) (2024)
  • [3] A. Liashyk, N. Reshetikhin, I. Sechin, Quantum Integrable Systems on a Classical Integrable Background , accepted by Comm. Math. Phys. (2024)
  • [4] Andrii Liashyk, Nicolai Reshetikhin, Ivan Sechin, Quantum integrable systems on a classical integrable background, arXiv preprint arXiv:2405.17865 (2024)
  • [5] A. Liashyk, S. Z. Pakuliak, On the R-matrix realization of quantum loop algebras, SciPost Phys, 12(146) (2022)
  • [6] A. Liashyk, S. Pakuliak, E. Ragoucy, Recurrence relations for off-shell Bethe vectors in trigonometric integrable models, J. Phys. A: Math. Theor., 55(075201) (2022)
  • [7] A. Liashyk, S. Z. Pakuliak, Gauss Coordinates vs Currents for the Yangian Doubles of the Classical Types, SIGMA, 16(120), 23 (2021)
  • [8] A. Liashyk, S. Z. Pakuliak, Algebraic Bethe ansatz for 𝔬_{2n+1}-invariant integrable models, Theoret. and Math. Phys(206), 19-39 (2021)
  • [9] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, Actions of the monodromy matrix elements onto 𝔤𝔩(m|n)-invariant Bethe vectors, J. Stat. Mech, 2009(093104) (2020)
  • [10] A Liashyk, S Pakuliak, E Ragoucy, Scalar products and norm of Bethe vectors in invariant integrable models, arXiv preprint arXiv:2503.01578 (2025)
  • [11] A Liashyk, S Pakuliak, On the R-matrix realization of the quantum loop algebra. The case of Uq (Dn (2)), Journal of Mathematical Physics, 65(12) (2024)
  • [12] A Liashyk, S Pakuliak, E Ragoucy, Rectangular recurrence relations in and invariant integrable models, arXiv preprint arXiv:2412.05224 (2024)
  • [13] A Hutsalyuk, A Liashyk, Master equation for correlation functions in algebra symmetry related models, arXiv preprint arXiv:2102.05017 (2021)
  • [14] A Liashyk, SZ Pakuliak, Algebraic Bethe ansatz for-invariant integrable models, Theoretical and Mathematical Physics, 206(1), 19-39 (2021)
  • [15] A Hutsalyuk, A Liashyk, SZ Pakuliak, E Ragoucy, NA Slavnov, Actions of the monodromy matrix elements onto$\mathfrak{g}\mathfrak{l}\left(m\vert n\right)$-invariant Bethe vectors, Journal of Statistical Mechanics: Theory and Experiment, 2020(9) (2020)
  • [16] A Liashyk, SZ Pakuliak, E Ragoucy, NA Slavnov, New symmetries of$ {\mathfrak{gl}(N)}$-invariant Bethe vectors, Journal of Statistical Mechanics: Theory and Experiment, 2019(4) (2019)
  • [17] AN Liashyk, SZ Pakuliak, E Ragoucy, NA Slavnov, Bethe vectors for orthogonal integrable models, Theoretical and Mathematical Physics, 201(2), 1545-1564 (2019)
  • [18] A Liashyk, New approach to scalar products of Bethe vectors, arXiv preprint arXiv:1907.11875 (2019)
  • [19] A Hutsalyuk, A Liashyk, S Pakuliak, E Ragoucy, NA Slavnov, Scalar products and norm of Bethe vectors for integrable models based on$U_q(\widehat{\mathfrak{gl}}_{n})$, SciPost Physics, 4(1) (2018)
  • [20] A Liashyk, NA Slavnov, On Bethe vectors in$ \mathfrak{g}{\mathfrak{l}}_3 $-invariant integrable models, Journal of High Energy Physics, 2018(6), 1-32 (2018)
  • [21] A Hutsalyuk, A Liashyk, SZ Pakuliak, E Ragoucy, NA Slavnov, Norm of Bethe vectors in models with gl (m| n) symmetry, Nuclear Physics B (2017)
  • [22] AV Zabrodin, AV Zotov, AN Liashyk, DS Rudneva, Asymmetric six-vertex model and the classical Ruijsenaars–Schneider system of particles, Theoretical and Mathematical Physics, 192(2), 1141-1153 (2017)
  • [23] A Hutsalyuk, A Liashyk, SZ Pakuliak, E Ragoucy, NA Slavnov, Scalar products of Bethe vectors in the models with gl (m| n) symmetry, Nuclear Physics B, 923, 277-311 (2017)
  • [24] AA Hutsalyuk, AN Liashyk, SZ Pakuliak, E Ragoucy, NA Slavnov, Current presentation for the super-Yangian double and Bethe vectors, Russian Mathematical Surveys, 72(1) (2017)
  • [25] A Hutsalyuk, A Liashyk, SZ Pakuliak, E Ragoucy, NA Slavnov, Form factors of the monodromy matrix entries in gl (2| 1)-invariant integrable models, Nuclear Physics B, 911, 902-927 (2016)
  • [26] A Hutsalyuk, A Liashyk, SZ Pakuliak, E Ragoucy, NA Slavnov, Multiple actions of the monodromy matrix in gl (2| 1)-invariant integrable models, Symmetry, Integrability and Geometry: Methods and Applications, 12 (2016)
  • [27] A Hutsalyuk, A Liashyk, SZ Pakuliak, E Ragoucy, NA Slavnov, Scalar products of Bethe vectors in models with${\mathfrak{gl}}(2| 1)$symmetry 1. Super-analog of Reshetikhin formula, Journal of Physics A: Mathematical and Theoretical, 49(45) (2016)
  • [28] M Beketov, A Liashyk, A Zabrodin, A Zotov, Trigonometric version of quantum–classical duality in integrable systems, Nuclear Physics B, 903, 150-163 (2016)
  • [29] A Hutsalyuk, A Liashyk, SZ Pakuliak, E Ragoucy, NA Slavnov, Scalar products of Bethe vectors in models with$\mathfrak{g}\mathfrak{l}(2|1)$symmetry 2. Determinant representation, Journal of Physics A: Mathematical and Theoretical, 50(3) (2016)

 

更新时间: 2025-08-02 17:00:08


北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060