北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Large Foundation Models: Mathematics, Algorithms, and Applications
Large Foundation Models: Mathematics, Algorithms, and Applications
Large foundation models have achieved remarkable success across various domains, including general applications like Natural Language Processing, image, speech, and video, as well as scientific fields such as materials science, molecular biology, and protein engineering. While the underlying techniques are firmly rooted in applied mathematics, their development has often been driven by empirical engineering practices, leading to significant practical breakthroughs. Diffusion models serve as a prime example, demonstrating both substantial engineering benefits and profound mathematical underpinnings.

This lecture series aims to bridge the gap between foundation models and their mathematical foundations, fostering interdisciplinary discussions, particularly between mathematics and machine learning.

Prerequisites:
-- For participants from a machine learning background, a solid understanding of Calculus and graduate-level Probability is required. While knowledge of stochastic processes is not strictly necessary, a basic understanding will significantly enhance comprehension.
-- For those from a mathematics background, prior knowledge of neural networks is essential. If you lack this prerequisite, please refer to the first three chapters of 'Neural Networks and Deep Learning' (http://neuralnetworksanddeeplearning.com).

Course Content:
The course will primarily cover autoregressive models, diffusion models, and discrete diffusion models, including their underlying mathematics and algorithms. We will explore their diverse applications across various domains, with a particular focus on multi-modalities.
讲师
胡丕丕
日期
2025年09月08日 至 2026年01月08日
位置
Weekday Time Venue Online ID Password
周三 09:50 - 12:15 Shuangqing ZOOM 01 928 682 9093 BIMSA
修课要求
Calculus, Probability I, Neural networks
听众
Undergraduate , Advanced Undergraduate , Graduate , 博士后 , Researcher
视频公开
公开
笔记公开
公开
语言
中文 , 英文
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060