棱镜上同调导论
Prismatic cohomology, which is developed in a recent work of Bhatt-Scholze, is a cohomology theory for schemes over p-adic rings. It is considered to be an overarching cohomology theory in p-adic geometry, unifying etale, de Rham, and crystalline cohomology. Due to wide-ranging applications in p-adic Hodge theory and p-adic Galois representations, it is one of the central topics of active research. In this course, we will start by going over motivational background in p-adic cohomology theories, and then give a rough overview of main ideas and results in the paper "Prisms and prismatic cohomology" by Bhatt-Scholze. If time permits, we will also briefly discuss how the prismatic theory may reveal a deeper understanding of p-adic Galois representations.
讲师
日期
2022年09月14日 至 12月23日
网站
修课要求
Algebraic geometry (background in algebraic number theory will be helpful)
参考资料
1. "Prisms and prismatic cohomology" by Bhargav Bhatt and Peter Scholze, Annals of Mathematics
2. "Prismatic F-crystals and crystalline Galois representations" by Bhargav Bhatt and Peter Scholze
3. https://sites.google.com/view/yong-suk-moons-webpage/teaching?authuser=0
2. "Prismatic F-crystals and crystalline Galois representations" by Bhargav Bhatt and Peter Scholze
3. https://sites.google.com/view/yong-suk-moons-webpage/teaching?authuser=0
听众
Graduate
视频公开
不公开
笔记公开
不公开
语言
英文
讲师介绍
Yong Suk Moon于2022年秋作为助理研究员入职BIMSA。他的研究方向包括数论和算术几何。具体而言,他现在的研究集中在p-进霍奇理论,Fontaine-Mazur猜想和p-进Langlands纲领。他于2016年在哈佛大学取得博士学位,之后在普度大学作为访问助理教授工作3年,2019-2022年在美国亚利桑那大学做博士后。