北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Geometric Aspects of Integrability \(ICBS\)
Geometric Aspects of Integrability
Kindly note that from May 13 to June 10, every Tuesday, Prof. Koroteev will add one more lecture on 9:50-12:15.
The ZOOM ID on every Tuesday will be different, please refer to the following information:

2025-05-13, 09:50-12:15, A7-307 (Zoom 17: 442 374 5045)
2025-05-15, 13:30-15:05, A14-203 (Zoom 16: 468 248 1222)
2025-05-20, 09:50-12:15, A7-307 (Zoom 17: 442 374 5045)
2025-05-22, 13:30-15:05, A14-203 (Zoom 16: 468 248 1222)
2025-05-27, 09:50-12:15, A7-307 (Zoom 17: 442 374 5045)
2025-05-29, 13:30-15:05, A14-203 (Zoom 16: 468 248 1222)
2025-06-03, 09:50-12:15, A7-307 (Zoom 16: 468 248 1222)
2025-06-05, 13:30-15:05, A14-203 (Zoom 16: 468 248 1222)
2025-06-10, 09:50-11:25, A7-307 (Zoom 16: 468 248 1222)

In this course, I will explain how quantum and classical integrable systems arise from algebrogeometric constructions. In particular, I will discuss space of opers and their deformations on the projective line and how this space leads to both quantum spin chains (XXX, XXZ, XYZ) and classical many-body systems (Calogero, Ruijsenaars, etc). The two types of systems are related to each other via so-called quantum/classical duality which is an integrable systems avatar of the Geometric Langlands correspondence. The topics will include
1. (q-)Opers on the projective line
2. QQ-systems, Bethe Ansatz
3. The ODE/IM Correspondence
4. Quantum/Classical duality
5. Elliptic integrable systems
6. Enumerative algebraic geometry with connections to integrability
Professor Lars Aake Andersson
讲师
彼得·科罗捷耶夫
日期
2025年02月20日 至 06月10日
位置
Weekday Time Venue Online ID Password
周四 13:30 - 15:05 A14-203 Zoom 16 468 248 1222 BIMSA
课程大纲
In this course, I will explain how quantum and classical integrable systems arise from algebro-geometric constructions. In particular, I will discuss space of opers and their deformations on the projective line and how this space leads to both quantum spin chains (XXX, XXZ, XYZ) and classical many-body systems (Calogero, Ruijsenaars, etc). The two types of systems are related to each other via so-called quantum/classical duality which is an integrable systems avatar of the Geometric Langlands correspondence.

The topics will include

(q-)Opers on the projective line.
a. Definitions, connections, q-connections, differential/difference equations
b. (q-) Oper conditions. Miura opers, Z-twisted Miura opers
QQ-systems, Bethe Ansatz
a. QQ-systems from q-oper conditions.
b. Bethe Ansatz equations from QQ-equations.
c. Extended QQ-systems. Toroidal q-opers.
The ODE/IM Correspondence
a. Review of Bazhanov-Lukyanov-Zamolodchikov work
b. Reformulation in terms of affine/q-opers
Quantum/Classical duality
a. Opers of type A. qWronskians from QQ-relations
b. Spectral curves of many-body systems from q-Wronskian relation
Elliptic integrable systems
a. XYZ chain, Elliptic Calogero/RS models.
b. The diamond of integrability
Enumerative algebraic geometry with connections to integrability
a. Quantum equivariant K-theory of Nakajima quiver varieties. qKZ/dynamical equations
b. Bethe equations from enumerative counts
c. Many-body systems from enumerative counts.
听众
Advanced Undergraduate , Graduate , 博士后 , Researcher
视频公开
公开
笔记公开
公开
语言
英文
讲师介绍
My education begain in Russia where I learned math and physics at Moscow Insitute of Physics and Technology. I started my research career as a theoretical physicist after obtaining my PhD from University of Minnesota in 2012. At first, my research focus was drawn to various aspects of supersymmetric gauge theories and string theory. However, I have always been drawn to pure abstract mathematics since my student days. Since around 2017 I have been a full time mathematician.

My current research is focused on the interaction between enumerative algebraic geometry, geometric representation theory and integrable systems. In general I work on physical mathematics which nowadays represents a large part of modern math. A significant amount of problems that are studied by mathematicians comes from string/gauge theory. More recently I began to study number theory and how it is connected to other branches of mathematics.

If you are postdoc or a graduate student in Beijing area and you are interested in working with me contact me via email.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060