Diophantine problems and p-adic period mappings
In 1980s, Faltings proved the Mordell conjecture which states that any smooth projective curve over a number field of genus greater than 1 has only finitely many rational points. In this course, we will go over a different proof recently given by Lawrence and Venkatesh using p-adic Hodge theory; they consider a p-adic period map which encodes the variation of p-adic Galois representations in a family of algebraic varieties, and study its relation to the complex period map. We will also discuss their application of the method to higher dimensional situations.
讲师
日期
2024年03月19日 至 06月18日
位置
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
周二,周四 | 10:00 - 11:35 | A3-1a-204 | ZOOM 03 | 242 742 6089 | BIMSA |
修课要求
Basic algebraic geometry and algebraic number theory
课程大纲
TBA
参考资料
"Diophantine problems and p-adic period mappings" by Lawrence and Venkatesh, Invent. Math. (2020)
听众
Advanced Undergraduate
, Graduate
, 博士后
, Researcher
视频公开
不公开
笔记公开
公开
语言
英文
讲师介绍
Yong Suk Moon于2022年秋作为助理研究员入职BIMSA。他的研究方向包括数论和算术几何。具体而言,他现在的研究集中在p-进霍奇理论,Fontaine-Mazur猜想和p-进Langlands纲领。他于2016年在哈佛大学取得博士学位,之后在普度大学作为访问助理教授工作3年,2019-2022年在美国亚利桑那大学做博士后。