北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > One day workshop on Arithmetic Statistics
One day workshop on Arithmetic Statistics
This workshop brings together several experts in arithmetic statistics to give talks on the statistical behavior of ideal class groups, Selmer groups of elliptic curves, and related topics.
组织者
法拉纳兹·阿米里 , 李永雄 , 朱秀武
演讲者
Arul Shankar ( University of Toronto )
舒杰 ( Tongji University )
王维彤 ( Shing-Tung Yau Center of Southeast University )
MyungJun Yu ( Yonsei University )
日期
2025年05月29日 至 29日
位置
Weekday Time Venue Online ID Password
周四 09:00 - 16:30 A7-201 ZOOM 06 537 192 5549 BIMSA
日程安排
时间\日期 05-29
周四
09:00-10:00 Arul Shankar
10:30-11:30 MyungJun Yu
14:00-15:00 王维彤
15:15-16:15 舒杰

*本页面所有时间均为北京时间(GMT+8)。

议程
    2025-05-29

    09:00-10:00 Arul Shankar

    Ranks and 2-Selmer groups of elliptic curves

    A web of related conjectures, due to works of Goldfeld, Katz--Sarnak, Poonen-Rains, and Bhargava--Kane--Lenstra--Poonen--Rains, predict the distributions of ranks and Selmer groups of elliptic curves over Q. However the data agrees quite poorly with these predictions: on average, the ranks appear to be bigger in the data, while the 2-Selmer groups appear to be smaller. In this talk, we will discuss joint work with Takashi Taniguchi, in which we give a theoretical explanation for deviation of the data on 2-Selmer groups from the predicted distribution, namely, the existence of a secondary term.

    10:30-11:30 MyungJun Yu

    The distribution of the cokernel of a random p-adic matrix

    The cokernel of a random $p$-adic matrix can be used to study the distribution of objects that arise naturally in number theory. For example, Cohen and Lenstra suggested a conjectural distribution of the p-parts of the ideal class groups of imaginary quadratic fields. Friedman and Washington proved that the distribution of the cokernel of a random $p$-adic matrix is the same as the Cohen–Lenstra distribution. Wood generalized the result of Friedman–Washington by considering a far more general class of measure on $p$-adic matrices. In this talk, we explain a further generalization of Wood’s work. This is joint work with Dong Yeap Kang and Jungin Lee.

    14:00-15:00 王维彤

    Bad primes in Cohen-Lenstra-Martinet Heuristics

    In this talk, we first give a brief introduction to the Cohen-Lenstra Heuristics which predict the distribution of the p-part of class groups. However the method only works for primes that do not divide the order of the Galois group, or just the so-called ``good primes'' in general. Then we show by examples and some results that when it comes to bad primes, the statistical behavior of the p-part of class groups is qualitatively different from a random module in the heuristics. And we introduce its connection with Gerth's conjecture, which could be described as generalizing Cohen-Lenstra Heuristics to bad primes.<br>

    15:15-16:15 舒杰

    Twists of Fermat curves and CM ableian varieties

    We prove the distribution of Selmer ranks in the certain family of $p$-th twists of CM abelian varieties obeys the symplectic distribution or the unitary distribution. As an application, for a prime $p\geq 3$, we obtain that the twisted Fermat curve $X^p+Y^p=\delta$ over a number field containing a primitive $p$-th root of unity is ``largely" unsolvable as $\delta$ varies.

北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060