李永雄
副研究员
团队: 数论和表示论
办公室: A11-102
邮箱: liyongxiong@bimsa.cn
研究方向: 数论
个人简介
李永雄在2015年获得中科院数学所博士学位。研究方向包括椭圆曲线的算术、L-函数的特殊值以及Iwasawa 理论。
研究兴趣
- 椭圆曲线的算术
- L-函数的特殊值
- Iwasawa 理论
教育经历
- 2010 - 2015 中科院数学所 基础数学 博士
- 2006 - 2010 武汉大学 数学基地班 学士
工作经历
- 2018 - 2024 清华大学 助理教授
- 2015 - 2018 清华大学 博士后
出版物
- [1] Y. X. Li, Y. Liu and Y. Tian, 有理数域上带复乘椭圆曲线的 Birch-Swinnerton-Dyer 猜想, 中国科学: 数学, 第54卷(第9期), 1283-1296 (2024)
- [2] L. T. Deng and Y. X. Li, An application of Birch-Tate formula to tame kernels of real quadratic number fields, Proc. Indian Acad. Sci. Math. Sci., 134 (2024), no. 2 (2024)
- [3] Y. X. Li, Some remarks on p-adic L-functions for certain abelian varieties with complex multiplication, Int. J. Number Theory, 20 (2024), no. 1, 159–184 (2024)
- [4] Y. X. Li, Selmer groups of certain abelian varieties with complex multiplication, Acta Arithmetica, 203, 289-305 (2022)
- [5] J. Coates, J. N. Li and Y. X. Li, Classical Iwasawa theory and infinite descent on a family of abelian varieties, Selecta Mathematica, 27, 1-36 (2021)
- [6] J. Choi and Y. X. Li, Quadratic twists of X_0(14), J. Number Theory , 224 (2021), 142–164 (2021)
- [7] J. Coates and Y. X. Li, Non-vanishing theorems for central L-values of some elliptic curves with complex multiplication, Proc. Lond. Math. Soc. (3) , 121 (2020), no. 6, 1531–1578 (2020)
- [8] Y. Kezuka and Y. X. Li, A classical family of elliptic curves having rank one and the 2-primary part of their Tate-Shafarevich group non-trivial. , Doc. Math. , 25 (2020), 2115–2147 (2020)
- [9] J. Choi, Y. Kezuka and Y. X. Li, Analogues of Iwasawa's μ=0 conjecture and the weak Leopoldt conjecture for a non-cyclotomic Z_2-extension., Asian J. Math., 23 (2019), no. 3, 383–400 (2019)
- [10] L. Cai, Y. X. Li and Z. J. Wang, Special automorphisms on Shimura curves and non-triviality of Heegner points, Science China Mathematics, 59, 1307-1326 (2016)
- [11] J. Coates, Y. X. Li, Y. Tian and S. Zhai, Quadratic twists of elliptic curves, Proc. Lond. Math. Soc. (3) , 110 (2015), no. 2, 357-394 (2015)
- [12] YX Li, On the mu-invariant of two-variable 2-adic-functions, GLASGOW MATHEMATICAL JOURNAL (2025)
- [13] Y Kezuka, YX Li, Non‐vanishing of central L L‐values of the Gross family of elliptic curves, Journal of the London Mathematical Society, 111(6), e70192 (2025)
- [14] LT Deng, Y Kezuka, YX Li, MF Lim, Non-commutative Iwasawa theory of abelian varieties over global function fields, arXiv (2024)
- [15] YX Li, Some remarks on-adic-functions for certain abelian varieties with complex multiplication, International Journal of Number Theory, 20(1), 159-184 (2024)
- [16] Y Kezuka, YX Li, Non-vanishing of central$L$-values of the Gross family of elliptic curve, arXiv (2023)
- [17] LT Deng, YX Li, S Zhai, Quadratic forms, -groups and -values of elliptic curves, arXiv (2023)
- [18] Y Kezuka, Y Li, A Classical Family of Elliptic Curves having Rank One and the$2$-Primary Part of their Tate-Shafarevich Group Non-Trivial, Documenta Mathematica, 25, 2115-2147 (2020)
- [19] J Coates, Y Li, Non‐vanishing theorems for central$L$‐values of some elliptic curves with complex multiplication, Proceedings of the London Mathematical Society, 121(6), 1531-1578 (2020)
- [20] J Choi, Y Kezuka, Y Li, Analogues of Iwasawa's$\mu=0$conjecture and the weak Leopoldt conjecture for a non-cyclotomic$\mathbb{Z}_2$-extension, arXiv (2017)
- [21] Y Li, Y Liu, Y Tian, On The Birch and Swinnerton-Dyer Conjecture for CM Elliptic Curves over $\BQ$, arXiv (2016)
- [22] YX Li, On the-functions, Glasgow Mathematical Journal, 1-31 (2003)
更新时间: 2025-07-24 17:00:09