叶夫根·马科东斯基
助理研究员
团队: 数论和表示论
办公室: A3-1a-202
邮箱: mak@bimsa.cn
研究方向: 代数学
个人简介
Ievgen Makedonskyi于俄罗斯高等经济研究大学获得数学博士学位,先后在俄罗斯高等经济研究大学、马克斯普朗克数学研究所、东京大学、斯科尔科沃科技大学、德国耶拿大学任职,2022年加入北京雁栖湖应用数学研究院任助理研究员,研究兴趣包括李代数、多项式导子、仿射Kac-Moody李代数、Weyl和Demazure模、非对称Macdonald多项式、近世代数、弧簇等。
研究兴趣
- Lie algebras, polynomial derivations, affine Kac-Moody Lie algebras, Weyl and Demazure modules, nonsymmetric Macdonald polynomials, current algebras, arc varieties.
教育经历
- 2013 - 2016 俄罗斯高等经济研究大学数学系 数学 博士
- 2011 - 2013 乌克兰基辅国立大学 力学与数学 硕士
- 2007 - 2011 乌克兰基辅国立大学 力学与数学 学士
工作经历
- 2022 - 北京雁栖湖应用数学研究院 助理研究员
- 2022 - 2022 耶拿大学 博士后
- 2022 - 2022 马克斯·普朗克数学研究所 博士后
- 2019 - 2022 斯科尔科沃科学技术研究所高等教育研究中心
- 2018 - 2019 东京大学 博士后
- 2017 - 2017 马克斯·普朗克数学研究所 博士后
- 2016 - 2018 俄罗斯高等经济研究大学代数几何实验室
荣誉与奖项
- 2012 Voitech Jarnik IMC, Czech Republic, Ostrava (first prize)
- 2011 International Mathematics Competition, Bulgaria (first prize)
出版物
- [1] E. Feigin, A. Khoroshkin, Ie. Makedonskyi, Cauchy identities for staircase matrices (2024)
- [2] B. Kounyavsky, A. Regeta, Ie. Makedonskyi , Bracket width of current Lie algebras, submitted to Journal of Algebra (2024)
- [3] Ie. Makedonskyi, I. Makhlin, Poset polytopes and pipe dreams: types C and B, submitted to IMRN (2024)
- [4] E. Feigin. A. Khoroshkin, Ie. Makedonskyi, D. Orr, Parahoric Lie algebras and parasymmetric Macdonald polynomials, accepted by Israel Journal of Math (2023)
- [5] E. Feigin, A. Khoroshkin. Ie. Makedonskyi, D. Orr, Peter-Weyl theorem for Iwahori groups and highest weight categories, submitted to Annales de l'Institut Fourier (2023)
- [6] E. Feigin. Ie. Makedonskyi, D. Orr, Nonsymmetric $q$-Cauchy identity and representations of the Iwahori algebra, accepted by Kyoto Mathematical Journal (2023)
- [7] A. Regeta, Ie. Makedonskyi , Bracket width of the Lie algebra of vector fields on a smooth ffine curve, Journal of Lie theory (2023)
- [8] I. Dumanski, E. Feigin, Ie. Makedonskyi, I. Makhlin, On reduced arc spaces of toric varieties, accepted by Algebra and Number Theory (2022)
- [9] E. Feigin, I. Makedonskyi, Vertex Algebras and Coordinate Rings of Semi-infinite Flags, Comm. Math. Phys., 2019, p. 1-24.
- [10] E. Feigin, I. Makedonskyi, Weyl modules for osp(1; 2) and nonsymmetric Macdonald polynomials, Mathematical Research Letters, vol. 24, no. 3 (2017), pp. 741-766.
- [11] I. Makedonskyi, On Noncommutative Bases of Free Modules of Derivations over Polynomial Rings, Communications in Algebra, 2016, vol. 1. no. 44. pp. 11-25.
- [12] E. Feigin, I. Makedonskyi, Nonsymmetric Macdonald polynomials and PBW filtration: Towards the proof of the Cherednik-{Orr conjecture, Journal of Combinatorial Theory, series A, 2015, vol. 135, pp. 60-84.
- [13] Ie. O. Makedonskyi, A. P. Petravchuk, On nilpotent and solvable Lie algebras of derivations, Journal of Algebra, 2014, vol. 401, pp. 245-257.
- [14] Ie. Makedonskyi, On Wild and Tame finite dimensional Lie algebras, Functional Analisys and it's applications, 2013, vol. 47, issue 4, pp. 271-283.
- [15] Ie. O. Makedonskyi, A. P. Petravchuk, On finite dimensional Lie algebras of planarvector fields with rational coefficients, Methods Funct. Anal. Topology, 2013, vol. 19, no. 4, pp. 376-388.
- [16] I. V. Arzhantsev, Ie. O. Makedonskii, A. P. Petravchuk, Finite-Dimansional subalgebras of polynomial Lie algebras of rank one, Ukrainian Math. Journal, 2011, vol. 63, no. 5, pp. 827-832.
- [17] Ie. Makedonskyi Semi-infinite Plucker relations and arcs over toric degeneration, accepted to Mathematical Research Letters.
- [18] E. Feigin, I. Makedonskyi, Generalized Weyl modules, alcove paths and Macdonald polynomials, Selecta Mathematica, 23(4), pp. 2863-2897.
- [19] E. Feigin, I. Makedonskyi, Generalized Weyl modules for twisted current algebras, Theoretical and Mathematical Physics 192 (2), pp. 1184-1204.
- [20] E. Feigin, I. Makedonskyi, D. Orr, Generalized Weyl modules and nonsymmetric q-Whittaker functions, Advances math, v. 330, p. 997-1033.
- [21] E. Feigin, S. Kato, I. Makedonskyi, Representation theoretic realization of nonsymmetric Macdonald polynomials at infinity, accepted to Journal fur die reine und angewandte Mathematik.
- [22] E. Feigin, I. Makedonskyi, Semi-infinite Plucker relations and Weyl modules, IMRN, rny121.
- [23] E. Feigin, A. Khoroshkin, Ie. Makedonskyi Duality theorems for current groups, accepted to Israel Journal of Mathematics.
更新时间: 2024-12-09 15:21:37